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ABSTRACT 

 

VEHICLE ROUTING FOR AERIAL SURVEILLANCE WITH A 

HOMOGENEOUS FLEET 

 

 

Tarakçı, Koray 

Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Esra Karasakal 

Co-Supervisor: Prof. Dr. Orhan Karasakal 

 

 

December 2021, 87 pages 

 

In this study, we develop models and solution approaches for planning the 

surveillance mission of a homogeneous fleet of Unmanned Aerial Vehicles (UAVs). 

Predefined areas are to be observed while satisfying a minimum probability of target 

detection. Areas are assumed to be rectangular and discrete. UAVs with electro-

optical sensors take off from a base and fly through predefined routes. The endurance 

of UAVs is limited by the maximum flight distance. The proposed models minimize 

the total travel distance of UAVs to meet the mission requirements. Each UAV starts 

its tour from the base and, after performing its mission over one or more areas, 

returns to the base. We developed a mathematical model to solve the route planning 

for UAVs. Since the problem is NP-Hard, we propose two constructive heuristic 

algorithms. In the proposed solution approach, we initially transform our problem 

into an m-TSP problem. Heuristic algorithms start with m-TSP solution and improve 

the solution to reach the best feasible one. An extensive computational study on the 

problems taken from the literature shows that the proposed heuristics produce 

efficient solutions in a reasonable time.  
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ÖZ 

 

HAVADAN GÖZETLEME İÇİN HOMOJEN BİR FİLO İLE ARAÇ 

ROTALAMA 

 

 

Tarakçı, Koray 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Esra Karasakal 

Ortak Tez Yöneticisi: Prof. Dr. Orhan Karasakal 

 

 

Aralık 2021, 87 sayfa 

 

Bu çalışmada, özdeş İnsansız Hava Araçlarının (İHA) gözetleme ve keşif amacıyla 

gerçekleştirdikleri görevlerin planlanması için model ve çözüm yöntemleri 

geliştirdik. Dikdörtgen şeklinde ve kesikli olduğu varsayılan hedef sahalarının belirli 

bir hedef tespiti oranını sağlayacak şekilde taranması istenmektedir. Sensörlerle 

donatılmış birden çok özdeş İHA, bir üsten başlayarak hedeflere belirli bir rotada 

hareket eder. Her bir İHA, belirli bir maksimum uçuş menzilini geçemeyecek şekilde 

sınırlandırılmıştır. Problemde amaç, her İHA’lar için oluşturulan turların toplam 

mesafesini en küçüklemektir. Hedefteki tarama sürecinin sonlanması sonrasında rota 

planına uygun şekilde ya başka bir dikdörtgen sahaya giderek tura devam eder, ya 

da üsse giderek turunu sonlandırır. Problemin çözümü için yeni bir matematiksel 

model geliştirdik. Matematiksel model Np-Hard olduğu için, iki yeni sezgisel 

algoritma önerdik. Söz konusu problem m-TSP yapısına çevrilmiştir. Bu 

algoritmalar m-TSP sonucunu başlangıç sonucu olarak ele alır ve sonucu 

iyileştirirler. Çalışmanın sonucunda makul sürelerde verimli çözümler sunuyoruz. 

 

Anahtar Kelimeler: İHA Görev Planlaması, Araç Rotalama, Algoritmalar 
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CHAPTER 1  

1 INTRODUCTION  

An Uncrewed Aerial Vehicle (UAV) is an air vehicle which does not carry a pilot 

and is operated autonomously or remotely by a human operator. Depending on the 

field of operation, a UAV is regarded as expandable or recoverable. 

Drones invented in the 1840s as balloon carriers, used for offensive purposes in 

military, are the first examples of UAVs (Buckley 2003). During World War I era, 

Hewitt-Sperry Automatic Airplane is produced; an unmanned airplane filled with 

explosives, using gyroscopes to maintain balance (Sahm V. H. & Werrell 1987). 

Then radio controlled pilotless aircrafts emerge. Between 1927 and 1936, the British 

Royal Navy and the United States Navy organize experiments for radio controlled 

aircrafts. Succesful experiments provoke the use of radio control to increase and the 

term drone begins to be used for such aircrafts (Howeth 1963). 

In the early World War II era, the first large scale aircraft production is commenced. 

Afterward, the Radioplane Company is established, and various models are 

designed. The production and utilization of UAVs accelerates and they are used in 

World War II (Naughton 2005). 

Today, the concept of UAV is still improving and ever-evolving both in terms of 

technical developments and popularity. 

UAVs are used in various fields with several different roles. Their purpose is 

diversified according to the need, and vehicles serve one or more objectives. 

 

 



 

 

2 

UAVs are used for: 

• Military combat,  

• As baits to reveal the targets, 

• Surveillance and observation, 

• Search and rescue missions, 

• Map drawing, 

• Logistic operations. 

Vehicles are classified according to their purposes, technical capabilities and 

features. Classification criteria is based on weight, maximum achievable altitude, 

degree of autonomy and maximum achievable distance. When a UAV is to be used 

for a mission, its technical capabilities must be considered carefully in order to 

choose the most suitable one for the requirements of that mission.  

UAVs, adopted into several fields, are highly demanded aircrafts. However, this 

study solely focuses on surveillance and observation missions. Surveillance and 

observation are significant elements, primarily for military purposes. Such missions 

are organized for intelligence gathering, maintaining border security and locating 

targets. Thus, multiple missions are coordinated in a short time period consistently. 

Depending on the mission, it may have to be repeated multiple times. Naturally, these 

missions are costly due to fuel consumption, maintenance and organizational factors. 

While it is vital to protect and maintain national security, it is also essential the 

operation is executed efficiently. Therefore, mission planning is the blueprint for 

successfully lowering total cost and productively using existing resources. Creating 

feasible solutions in a reasonable period of time is a challenge to for these missions. 

This thesis aspires to provide satisfying solutions that will eliminate or minimize 

unused capacity at hand. 

In this study, observation of the predefined rectangular areas is discussed via the 

proposed model. Identical UAVs equipped with electro-optical sensors take off from 

a base station, and visit rectangular areas without violating the distance capacity 
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limits. The UAVs surveil the regions with strips and return to the base station after 

all rectangles are visited. The objective is the minimization of total distance taken by 

UAVs. 

To be able to solve the problem, a new mathematical model is proposed. Since the 

problem is NP-Hard, two alternative heuristic algorithms are introduced. One of the 

heuristics uses an efficient TSP solver, and the other uses a neighborhood search 

approach. 

To the best of our knowledge, the UAV mission planning concept is studied with 

different extensions in the literature. Metaheuristic algorithms are adopted in order 

to provide reasonable solutions generally. Also, some of the produced heuristics are 

exclusive to the problem at hand. This study contributes to the literature by 

developing unique algorithms and providing an extension to a new problem. 

The organization of this thesis as follows. In chapter 2, literature review on the UAV 

Surveillance Mission Planning is given. In chapter 3, the problem is explained in 

detail, and the mathematical model is introduced. Two heuristic solution algorithms 

and their application to the problem are described in chapter 4. The computational 

results are presented in chapter 5. This study concludes with a discussion on the 

conclusions and the future research in chapter 6. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In this chapter, the development of UAV surveillance mission planning is examined, 

and research findings are shared in four subsections. These are single UAV, multiple 

UAVs, swarm and mixed vehicles mission planning. The findings are explained in 

chronological order. Further, a classification table of articles in the literature is 

shared in Table 2.1. Finally, the last section of this chapter focuses on the articles 

that inspired this study. The contribution of this thesis and its place in the literature 

is also mentioned. 

A study of taxonomy on UAV routing and trajectory optimization problems 

(UAVRTOP) in Coutinho, Battarra, and Fliege (2018) is considerably useful and 

valuable for this thesis to examine the literature. In the study, a review of UAVRTOP 

is shared and UAV literature is explained while seventy articles are examined. UAV 

articles are classified with respect to the topic of problems. These are trajectory 

optimization, path planning, routing, and task assignment. In these topics, different 

kinds of solution methods are introduced. Mainly Mixed Integer Linear Programing 

(MILP), rapidly-exploring random trees, metaheuristics and heuristics are used to 

reach the solutions. The least used methods are simulation, queue theory, 

enumeration and geometric methods. 

2.1 Single UAV Mission Planning 

According to our research, the first study for aerial surveillance planning is Panton 

and Elbers (1999). Aerial vehicles with high-resolution cameras are used by Defense 
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Sciences and Technology Organization (DSTO) to take pictures of twenty 

rectangular areas (targets) called swaths in different sizes. 

The vehicle flies near the swaths in four different patterns and collects the pictures. 

First, possible tracks are listed visually between a start base and an end base. Among 

these tracks, a sequence of targets is selected manually. This method is highly time-

consuming and cannot guarantee optimality. Optimization software tools that 

include an Integer Programming (IP) model similar to Travelling Salesman Problem 

(TSP) are designed in Panton and Elbers (1999). The objective is to minimize the 

total distance traveled by aerial vehicle. Compared to former procedure, the results 

are found to be satisfactory. The model solves twenty rectangles within seconds. 

In the following year, the same problem of Panton and Elbers (1999) is named the 

Regional Surveillance (RS) problem and studied in John, Panton, and White (2001). 

A metaheuristic procedure as an alternative solution technique is suggested. Three 

genetic algorithm models called Regional Surveillance Genetic Algorithm (RSGA) 

are produced. The methods use the steady state without duplicates crossover 

technique. If a new child is born out of a crossover and is not unique, it is then 

replaced with the parent with the lowest fitting value. Three RSGA models are 

compared with the IP model, and the results show that a significant amount of CPU 

time is consumed by the IP model. Nonetheless, even if the RSGA solutions are sub-

optimal, they are reasonable according to CPU time. 

A multi-objective study is investigated in Tezcaner and Köksalan (2011). A 

generalized multi-objective TSP (MOTSP) is defined to decide the route of UAV 

search missions. The scenario of the problem is that a UAV visits a set of targets and 

arrives back to base. The problem is composed of two different sub-problems. 

Firstly, arcs to be followed between each target pair are determined by solving the 

shortest path problem (SPP). Later, the order of targets to be visited must be 

considered. Thus, it is handled by solving a MOTSP model. Finally, a Pareto optimal 

set is generated where an interactive approach helps find an appropriate solution for 

the decision-maker (DM) under the assumption that the utility function is linear. 
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UAV route planning problems under refueling constraints are investigated in Sundar 

and Rathinam (2012). One UAV must visit all targets without violating the fuel 

capacity. When fuel is not enough to reach the next target, the vessel visits the closest 

refueling area. A MILP formulation is produced. For complex problems, 

construction and improvement type heuristics are developed. Heuristics outputs are 

compared with the optimal solutions, which proves the heuristics to be fast and 

efficient.  

Frequently, objective functions concentrate on distance minimization. Nevertheless, 

new variants of objective functions emerge while the literature diversifies. A new 

model based on the search and rescue problem is published in Guitoni and Masri 

(2013). The focus is a single air vehicle restricted by the maximum flight time. The 

objective is to maximize the detection probability of targets on the assumption that 

target has a limited amount of time to stay alive. The model uses a probability map 

of containment which is a result of an information fusion process. Based on the 

historical data and the expert judgments, this process identifies possible areas where 

target may be situated. A map is divided into small sections (i.e., cells) and the 

probability of detection values are calculated for cells. Relying on an orienteering 

problem structure, the total probability of target detection is maximized by the 

model. 

In Babel (2017), an aerial surveillance problem with obstacles in which an aerial 

vehicle follows curvature paths is studied. An aerial vehicle must visit a set of 

landmarks and avoid obstacles on the map. The vehicle uses curve paths to fly to the 

landmark without passing through the obstacles. In the meantime, the vessel is 

assumed to have a constant speed, cannot move backward, and turn with minimum 

radius. Algorithms which add different landmarks to the network and optimize paths 

using a discrete routing model are offered. 

In Vasquez-Gomez et al. (2020), the focus is on a two-dimensional path coverage 

problem with a single UAV. In this study, the concentration is on starting and ending 

point of flight route. An efficient path planner is recommended, and the output is 
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compared with the output of previous methods. The path planner generates same or 

better solutions. 

Finally, a recent study acknowledges UAVs in a way to minimize their carbon 

footprint. Yi, Sutrisna, and Wang (2021) optimizes the velocity of an aerial vehicle 

at certain areas of an already-constituted path. The goal is to sustain adequate 

velocity values in certain areas of the path to ensure effective usage of drone’s 

battery. 

2.2 Multiple UAV Mission Planning 

Mission planning for multiple UAVs is extensively studied in surveillance mission 

planning. In NG and Ghanmi (2002), a Decision Support System (DSS) is developed 

to help find and follow unauthorized vessels that approach Canadian coasts. 

Insufficient information about the vessels makes the problem more complex. The 

system helps decision-makers find the sequence of scanned areas while maximizing 

the probability of target detection. The system consists of three sub-systems. The 

first sub-system aims to create a probability map of illegal vessels. While the area is 

divided into cells, the approximate location information is assumed to be obtained 

from intelligence reports. Thus, the vessels’ possible location in a predetermined 

amount of time is obtained with its probabilities. Considering the probability map, if 

the vessel is close to the coast, sub-system three suggests barrier patrol missions. 

Otherwise, sub-system two administers the way of scanning the regular and 

irregular-shaped areas. 

Some problems in literature refer to missions as tasks. A task allocation problem for 

a UAV fleet, introduced in Alighanbari, Kuwata, and How (2003), is an example to 

this. Multiple types of vehicles are used in the problem and, while some of the tasks 

can be satisfied by only one type of vehicle, some other tasks can be satisfied by 

multiple vehicle types. The problem demands strict time limitations for the tasks. In 

order to comply with such strict demands, the loitering concept is adopted, which is 
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the act of flying of a vehicle to spend a reasonable amount of time on the mission 

area to wait for another type of UAV. Additionally, there are no-fly zones in which 

vehicles are restricted in the considered area. For small-scale problems, a MILP 

model is developed. Alternatively, an approximate decomposition solution 

procedure to overcome complexity is created. A tabu search method for larger 

instances of the problem is proposed. 

Reconnaissance, surveillance, search and rescue missions with a limited number of 

vehicles are studied in Jacobson et al. (2006). These vehicles have different 

characteristics. The problem can be solved in the same manner as that of the Multiple 

Travelling Salesman Problem (M-TSP), and the related problem is solved by 

generalized hill climbing (GHC) and simultaneous generalized hill climbing (SGHC) 

algorithms. 

In Simonin, Le Cadre, and Dambreville (2009), a multilayered problem is defined. 

An area search problem for moving targets with multiple sensors is solved. The 

problem is divided into two as upper and lower levels. The objective of the problem 

is to maximize the probability of locating a hidden target in a large. First, assigning 

the sensors to the zones is attempted by the model, which is defined as a 2D 

assignment problem. Then in the lower level, the model performs resource 

distribution for the search areas to maximize the probability of target detection. 

A new variant of the min-max vehicle routing problem is defined in Yakıcı and 

Karasakal (2012). Demands of various types of customers are met via a 

heterogeneous fleet of vehicles. The problem is defined under the assumption that 

vehicles ensure one or more service types, maintain unlimited service capacity, have 

variable delivery and service times, and allow split delivery of services. For larger 

problems, a heuristic approach is introduced. 

Two metaheuristic procedures for autonomous UAV path planning are compared in 

Robergo, Tarbouchi, and Labonté (2013). A cost function, which evaluates dynamic 

features and limitations of a UAV such as path length, fuel consumption and altitude 

of the vehicle, is introduced to use with the metaheuristic procedures. First, a Genetic 
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Algorithm (GA) is introduced with four crossover operators. As for the second 

metaheuristic, a Particle Swarm Optimization (PSO) model is suggested and both 

metaheuristics are solved using parallel computing. Computational runs show that 

GA is superior to PSO. 

Multiple UAV routing for minimum time area coverage is analyzed in Avellar et al. 

(2015). A group of UAVs with image sensors cover an area. The solution consists of 

two sub-methods: First, a graph-based method is used to determine how a single 

UAV covers an area. Second, the output of the graph-based technique is used in a 

MILP formula which composes the UAV fleet’s route. It is quite similar to Vehicle 

Routing Problem (VRP), however some features of the problem are decided during 

task execution; such as the number of vehicles to be utilized to accomplish the task. 

A data collection and transfer problem is addressed in Macharet et al. (2017). A 

Wireless Sensor Network (WSN) contains sensors in nodes. Due to limited 

communication range, a mobile sink node travels within sensors and collects the 

accumulated data. The sink node behaves like a dubins vehicle which turns with 

curve patterns. When length and time of collection is considered, efficient routes are 

created. The bi-objective problem is solved by Nondominated Sorting Genetic 

Algorithm (NSGA)-II, a Multi Objective Evolutionary Algorithm (MOEA). 

A heterogeneous UAV fleet routing problem is presented in Coelho et al. (2017). 

Concept of the problem is the demand satisfaction with UAVs. Packages are 

expected to be delivered via UAVs while considering battery life and weight capacity 

of vessels. The model focuses on several minimization type objective functions: such 

as total distance, time spent on a package, number of UAVs used, maximum velocity 

and charging requirements. A MILP formulation is proposed. A matheuristic based 

solution technique with the weighted sum method to find a Pareto optimal is set to 

tackle the complexity. 

A MILP model is created in Alotaibi et al. (2017) which examines optimal routes for 

multiple UAVs under threat exposure and flight time limits while maximizing the 

total number of visited targets. For each edge, flight time and threat level are 
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calculated. Several methods are used to generate waypoints in order to reduce the 

high risk of threat. These obtained candidate waypoints are later used to optimize the 

UAV routes with branch and cut and price (BCP) algorithm, supported by minimum 

dependent sets and a basic path heuristic. 

A surveillance mission planning problem where multiple aerial vehicles gather 

information by covering areas of interest in an extended time horizon is promoted in 

Wang et al. (2018). The two objectives of the problem are defined as the 

maximization of the minimum number of non-repeatedly covered cells and the 

maximization of the total number of covered cells. A MOEA method is proposed. A 

specific chromosome representation that uses three mutation operators is generated 

and a weighted sum method is used to aid the decision-making process. 

Multiple UAV routing problems are investigated in Zhen et al. (2019). Areas of 

interest with different accuracy requirements are monitored by UAVs in a sequence. 

While monitoring, a UAV at a specific height related to accuracy level and the 

service time is required for each area. UAVs are capacitated by maximum flight time 

and the objective is to minimize total flight time. An integer linear programming 

model and a tabu search metaheuristic approach are used to solve the problem. 

A MILP model that examines multi-period, multi-vehicle coverage routing, and 

scheduling is defined in Zuo et al. (2020). The problem is defined as persistent 

surveillance which means visited areas are revisited within a certain interval. Zero 

aerial vehicle collusions and assaults during flight are assumed while the altitude of 

vehicles is constant. In the meantime, air vehicles can take off and land multiple 

times. All air vehicles are limited by a maximum operation time. Also, fuel 

constraints are defined, which limits the flight time. In order to extend the flight time 

restricted by fuel consumption, the aerial vehicles must visit a base node to refuel. 

The air vehicles must visit areas of interest (AOI), and these areas consist of points 

of interest (POI). Two conflicting objective functions are reviewed in the problem—

the simultaneous maximization of coverage area which is the number of visited POI 

and coverage time which means the time spent in an AOI. The problem is overseen 
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by considering both POI paths and AOI paths separately. First, the POI path planning 

problem is solved by a heuristic method. Then, search patterns and paths in each AOI 

are constructed. Finally, the AOI path planning problem with generated search 

patterns and paths is solved by a MILP solver. 

Recent articles disclose the aspect of battery life. The study of Li et al. (2020) is 

based on WSN to master detecting or monitoring tasks. According to it, sweep 

coverage is an essential element for WSNs and the idea of using UAVs as sensor 

nodes is recommended. Bearing the limits of battery life in mind, multiple UAVs are 

dispatched, aiming to achieve maximum sweep coverage in minimum time. A 

mathematical problem is established, and a new heuristic algorithm, called weighted 

targets sweep coverage, is presented. 

Another study is presented in Kiam, Besada-Portas, and Schulte (2021). Solar-

powered High Altitude Pseudo-Satellites (HAPSs) are found suitable to use multiple 

UAVs. A new planner is put forward based on MOEA, which operates the mission 

plan taking weather conditions into account. The GA-optimizer is tested under past 

weather data and realistic mission settings. 

2.3 Swarm Mission Planning 

Up to this point, single and multiple vessels are discussed as assets, yet there are 

some studies worth mentioning that use drone swarms.  

The first example of a swarm of UAVs is assembled in Lamont, Slear, and Melendez 

(2007). A comprehensive UAV swarm mission planning system is established and 

swarms of autonomous aerial vehicles are formed with two objectives: cost and risk 

of the given path. The cost of a path is the total time of the used path and fuel 

consumption. Whereas the other objective consists of terrain, detect and kill 

formulations. A path planning algorithm is submitted, and the output is given as an 

input to a MOEA. The metaheuristic objectives minimize the encompassing distance 
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traveled, the amount of climbing a vehicle realizes, and the risk resulting from threat 

areas. 

Pohl and Lamont (2008) study continues with the swarms and presents a new kind 

of problem called the Swarm Routing Problem (SRP). It provides mission routing of 

multiple autonomous UAVs. It is stated that UAVs move as swarms on the 

battlefield. During the combat, some of the vessels must meet enemy targets right on 

time. Moreover, the swarms can divide into sub-groups and visit the related targets. 

After the combat, the subgroups merge and continue the mission. A MOEA is 

developed as a solution method. Since the problem is a variant of the Vehicle 

Routing Problem with Time Windows (VRPTW), the benchmark problems are 

converted to SRP to measure the capability of MOEA. 

2.4 Mixed Vehicles Mission Planning 

A study of maritime routing is conducted in Grob (2006), in which a mathematical 

formulation is given for maritime surface surveillance routing problems for different 

vehicles such as helicopters, frigates, and maritime patrol aircrafts. It is implied that 

the proposed problem is related to the on-line TSP (OLTSP), a TSP on a dynamic 

network where the network changes in time. Six different algorithms are suggested 

to handle the problem. One of the defined heuristics is the nearest neighbor rule 

which is a greedy method. The task that takes the least amount of time is executed 

first. Another heuristic (n, k) does not consider a single vessel, instead it considers n 

vessels, calculates the shortest sequence of the tasks, and executes the first k of the 

sequence. The score per time rule and (n, k) score per time rule are similar to the 

former two heuristics. Rather than consumption of time of the task, importance score 

is used. Hence, the score per time rule demonstrates effective solutions with a 

reasonable computation time. 

Refueling problem is solved in Maini et al. (2019) with a ground vehicle (GV) which 

is used as a fueling station for a single UAV. A two-stage strategy generates the 
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coupled route. While the first stage generates feasible sites for both UAV and GV, 

the second stage optimizes a route for both vehicles with a MILP formulation. Also, 

a heuristic solution is proposed. 

Same problem is approached in Fesenko et al. (2020) too and it is settled by planting 

automated aerial battery replacing systems and locating them in specified places. 

According to the case, a UAV is expected to visit eleven monitoring stations and 

gather data. This route is fabricated by solving the TSP. Locations of the route points 

are determined via an algorithm in order to place the battery replacement systems. 

Therefore, both the route of the UAV and the system are obtained. 

Unmanned aerial and ground vehicles in urban environments for persistent 

surveillance are analyzed in Wu, Wu, and Hu (2021). UAVs perform circular 

coverings for specific areas. If UAVs cannot complete the tasks, unmanned ground 

vehicles (UAG) step in to resume. As for the solution, estimation of distribution 

algorithm (EDA) and GA are integrated into a heuristic procedure. From this point 

on, some of the studies that inspire the relevant thesis statement are described. 

Instead of UAV types, a risk assessment method for military surveillance 

applications is explored in Buyurgan and Lehlou (2015). The method is expected to 

improve the effectiveness of UAV used in combat and surveillance missions. Five 

risk factors are formulated while nine geographical parameters are taken into 

account. These parameters are foliage, distance, population, altitude, line of sight, 

slope, trafficability, past events and experience. The risk factors are foliage 

camouflage, proximity to population, long-range attacks, accessibility to regions, 

input from experts. By using these factors, risk values for relevant terrains are 

calculated. 
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Table 2.1 Literature classification according to the number of vehicles and vehicle 

types. 

 

In the rest of this section, the Aerial Surveillance Problem (ASP) is explained, and 

the branches of ASP are examined.  

ASP is introduced in Ng and Sancho (2009). Regional surveillance is studied with 

the aim of planning the search sequence of a set of given areas and the inner search 

pattern while minimizing the distance of the mission route. The mission plan must 

be limited to a specified mission duration, and the selected route must satisfy a 

minimum probability of target detection. The regions are assumed to be in the shape 

of rectangles or squares and areas to be searched have different exit and entry points. 

As a result, each and every combination of entry and exit points differs concerning 

distance and time. There is a correlation between these two metrics. While distance 

decreases, the probability of detection decreases as expected. The problem is 

Article Single UAV Multiple UAVs Swarms Mixed Vehicles

Panton and Elbers (1999) X

John, Panton, and White (2001) X

NG and Ghanmi (2002) X

Alighanbari, Kuwata, and How (2003) X

Grob (2006) X

Jacobson, McLay, Hall, Henderson, and Vaughan (2006) X

Lamont, Slear, and Melendez (2007) X

Pohl and Lamont (2008) X

Simonin, Le Cadre, and Dambreville (2009) X

Tezcaner and Köksalan (2011) X

Sundar and Rathinam (2012) X

Yakıcı and Karasakal (2012) X

Robergo, Tarbouchi, and Labonté (2013) X

Guitoni and Masri (2013) X

Avellar, Pereira, Pimenta, and Iscold (2015) X

Buyurgan and Lehlou (2015) X X X X

Macharet, Monteiro, Mateus, and Campos (2017) X

Coelho, Coelho, Coelho, Ochi, Haghnazar, Zuidema, Lima, and da Costa (2017) X

Alotaibi, Rosenberger, Mattingly, Punugu, and Visoldilokpun (2017) X

Babel (2017) X

Coutinho, Battarra, and Fliege (2018) X X X X

Wang, Kirubarajan, and Tharmarasa, Jassemi-Zargani and Kashyap (2018) X

Zhen, Li, Laporte, and Wang (2019) X

Vasquez-Gomez, Marciano-Melchor, Valentin, and Herrera-Lozada (2019) X

Maini, Sundar, Singh, Rathinam, and Sujit (2019) X

Zuo, Tharmarasa, Jassemi-Zargani, Kashyap, Thiyagalingam, and Kirubarajan (2020) X

Li, Xiong, She, and Wu (2020) X

Fesenko, Kliushnikov, Kharchenko, Rudakov, and Odarushchenko (2020) X

Yi, Sutrisna, and Wang (2021) X

Kiam, Besada-Portas, and Schulte (2021) X

Wu, Wu, and Hu (2021) X

Ng and Sancho (2009) X

Karasakal (2016) X

Karasakal, Karasakal, and Maraş (2020) X
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considered as a variant of classical TSP. As a solution method, a dynamic 

programming procedure is developed. 

Karasakal (2016), proposes efficient solution methods for ASP. A new formulation 

for ASP is introduced in this study. One UAV must take off from a base and surveil 

target areas in stripes to gather intelligence. The goal is to find the minimum distance 

tours while reassuring the target detection probability constraint. It is claimed that 

the formulation provides more efficient use than older versions and also a new model 

based on TSP formulation is introduced. While a more advanced formulation is 

presented, a max-min version of ASP is put forward to maximize the probability of 

minimum target detection. 

The bi-objective ASP is studied in Karasakal, Karasakal, and Maraş (2020). A multi-

objective mission planning model is defined using two conflicting objectives of 

Karasakal (2016). Multi-objective ASP (MASP) is solved with the ℇ-constraint 

method to generate the whole Pareto optimal set of the related problem. Also, 

heuristic methods are constructed to tackle more complex instances. Different initial 

solutions are generated by construction methods and an efficient solution set is found 

by the improvement method using the initial solution. Appropriate solutions for 

missions are demanded to be decided by a decision-maker. An interactive solution 

procedure is introduced so DM is not lost in enormous solution sets. 

In this thesis, an extension to ASP is introduced. Karasakal (2016) studies distance 

minimization while taking target detection probability for single UAV into 

consideration. The same objective is adopted in this thesis to handle the multiple 

UAV case of ASP. Karasakal (2016) makes it possible for target detection 

probability to be actively decided by the model, whereas the new problem in this 

thesis solely focuses on distance values. Hence, this extension is a contribution to 

multiple UAV mission planning, and it is placed under ASP. 

The proposed problem has resemblance Capacitated Vehicle Routing Problem 

(CVRP). The objective of the CVRP is to generate minimum cost routes to a fleet or 
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a set of vehicles where all vehicles are bounded by a capacity limit. In order to 

deliberate further on it, some of the recent studies for CVRP are mentioned below. 

One of the latest studies is conducted in Altabeeb et al. (2021). CVRP is tackled 

using cooperative hybrid firefly algorithms (CHFA) with multiple firefly algorithm 

populations. In this method, the solutions are assumed as fireflies. A local search 

strategy and genetic operators are used by algorithms. Multiple firefly population, 

and genetic operators provide diversity and help the method avoid local optima.  

Another study is introduced in Sitek Wikarek et al. (2021). The proposed problem is 

a mixture of various VRP variants such as CVRP, VRP with Pickup and Delivery 

(VRPPD), and VRP with Time Windows (VRPTW). The main difference of the 

related model from older variants is that alternative delivery points and parcel lockers 

are submitted by the model and inserted into the existing network. In order to obtain 

solutions, a Binary Integer Programing (BIP) model is created. Alternatively, a 

hybrid approach is used which integrates Constraint Programing (CP), GA and 

mathematical programing.  

For further information about CVRP and variants of VRP, the taxonomy of Breakers, 

Ramaekers, and Van Nieuwenhuyse (2016) may be examined. 
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CHAPTER 3  

3 PROBLEM DEFINITION AND MATHEMATICAL MODEL 

ASP is defined in Karasakal (2016). One UAV takes off from a base node and flies 

through the predefined regions, which are assumed to be rectangular or square. The 

areas are searched by the UAV equipped with electro-optical sensors, and the vessel 

uses preplanned search along strips, called patterns. Karasakal, Karasakal, and Maraş 

(2020) proposes MASP by combining two objective functions from Karasakal 

(2016). 

A more detailed problem definition and its features about ASP and MASP are 

presented in Section 3.1. In Section 3.2, it is focused on the study of this thesis, which 

is called Aerial Surveillance Problem with a Homogenous Fleet (ASP-H). 

3.1 Aerial Surveillance Problem: Problem Definition and the Existing 

Models 

In this section, mathematical models for ASP are examined and in the subsections, 

Minisum ASP, Maximin ASP, and MASP are explained respectively. 

Some of the features are mutual for all three problems. The ASP models are similar 

to well-known TSP (Flood 1956). In TSP, a salesman starts from a node, visits a set 

of nodes, and returns to the starting node. ASP adopts the same behavior. ASP has 

no nodes to visit, but rectangular region. UAV flies over the rectangular region for 

surveillance systemeticaly. 

In ASP, one UAV equipped with electro optic or electronic sensors takes off from a 

base and is sent to predefined regions for surveillance. When the UAV reaches a 

target region, it must enter the region and surveil it in strips. The region is assumed 

to be a rectangle or a square, although in real-life experience, the region may not be 
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necessarily rectangular. In that case, the region to be observed can be fit into a 

rectangle that is wide enough to cover the area but also tight enough to avoid 

unnecessary long pattern distances. 

There can be irregular regions, for example, a region in the shape of a line. Instead 

of placing it into a wide rectangular region, it can be divided into small rectangles. 

Consequently, UAVs avoid unnecessary travel. 

Each rectangular region has eight notional entry/exit points placed on the sides of 

each edge of the region. The entry/exit points are shown in Figure 3.1. One of the 

eight points is used to enter the region. Depending on the entry point, the UAV 

departs the area from one of two possible exit points. After the UAV is search over 

the area, it flies to the next area or to the base and lands if all the predefined target 

areas are already visited. 

 

Figure 3.1. An Illustration of eight notional entry/exit points for a rectangular area. 

A notional point is used to enter the area and then a strip is followed. When the 

opposite side of the strip is reached, UAV performs two ninety-degree turns and 

changes its direction. Turning distances are ignored in the model. 
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When a UAV reaches a target area, it enters the area using an entry point. The exit 

point is determined according to the pattern followed. If the pattern consists of an 

even number of strips, UAV leaves the area from the same side of the rectangle but 

in the opposite direction of the entry. Otherwise, it departs in the same direction of 

the entry but on the opposite side of the rectangle. The visual illustration of the entry 

and the exit points is shown in Figure 3.2. 

 

Figure 3.2. An illustration of the change of exit and entry point regarding the 

number of strips. 

The patterns of target areas guarantee a certain amount of minimum target detection 

probability. There is a correlation between the minimum target detection probability 

and the distance of the related pattern. As the pattern distance increases, more area 

is scanned by the UAV and more time is spent inside the target. Thus, the minimum 

probability of target detection increases. 

The calculation of target detection probability in the rectangles is based on 

Koopman's area search equation (Wagner, 1999). In ASP, the targets are assumed to 

be steady and uniformly distributed over the area. Since that is the case, equation (1) 

is used to calculating the values. 
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𝑃 = 1 − 𝑒−
𝑤
𝑠  

(1) 

In Equation (1), P is the probability of target detection where w is the sweep width, 

and s is the track spacing while the target is uniformly distributed over the area. 

Sweep width is an aggregated measure for the electro-optical sensor's capability to 

detect targets. In other words, it is the surveillance range of the sensors. The number 

of targets not detected inside the sweep width is equal to the number of targets 

detected outside the sweep width. (Koester, Cooper, 2004). In Figure 3.3, an 

illustration of sweep width logic on a lateral range curve is shown. The sum of areas 

A and the sum of areas B are equal. 

 

Figure 3.3. A graph shows the relation between lateral range and sweep width. 

Track spacing is the width of a strip's area. Also, it defines the distance between two 

consecutive strips’ centers, i.e., distance between the parallel flight paths of UAV. 

In Karasakal (2016), both distance and target detection probability are taken into 

consideration. The models Minisum and Maximin ASP evaluates multiple patterns 

that use same entry and exit points. These patterns are created by changing track 

spacing values while sweep width remains constant. While track spacing decreases 

the target detection probability increases. In return, because track spacing value 
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decreases, the number of strips increases for the relevant pattern. For this reason, the 

distance taken by air vehicles gets larger. 

In this study, the target detection probability that must be ensured and the sweep 

width value remain constant. The shortest pattern that ensures the minimum target 

detection probability is generated for each exit and entry point combination. 

 

Figure 3.4. An illustration of w and s parameters on a rectangular area. 

Assuming that there is a minimum target detection probability to be aimed, the track 

spacing must ensure the specified amount of probability by taking the following 

limitations into account: 

• The spacing must be larger than or equal to the sweep width. (𝑠 ≥ 𝑤). 

• If the aircraft travels vertically with respect to coordinate system, the width 

of the rectangular region must be divisible by s. 

exit

s

w

s

entry
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• If the aircraft travels horizontally with respect to coordinate system, the 

length of the rectangular region must be divisible by s. 

ASP variants such as Minisum ASP, Maximin ASP, and MASP calculate multiple 

patterns for one entry and exit point combination. Consequently, the model provides 

more option to surveil regions with different probability of target detection and 

distance values. However, ASP-H only minimizes the total distance taken by the 

fleet. ASP-H calculates shortest pattern that guarantees a constant target detection 

probability for each entry and exit point combination. Therefore, the model considers 

only the distance taken by UAVs. 

3.1.1 Mathematical Model: Minisum ASP 

Surveillance missions are costly because of high fuel consumption, long mission 

times, and maintenance charges. Therefore, reducing the mission time lowers the 

amount of consumed resources. Since such missions constantly repeat to ensure 

border control, the mission plans require optimization. Time is also a critical resource 

since the life of a person depends on the success of the mission. Minimization of the 

total distance serves both factors simultaneously. 

Minisum ASP (Karasakal 2016) intends to find the shortest tour to realize the 

mission successfully. In the meantime, the patterns of the rectangular areas are 

calculated in a way to ensure the minimum probability of target detection. The 

mathematical model of Minisum ASP is described below: (Karasakal, 2016) 

Indices 

i, j : indices of disjoint areas, i =1 and j=1 represent the base station. 

l, k : indices of entry and exit points of areas, l=1, … ,8 and k=1, … ,8. 

s : index of the pattern within an area for each feasible combination of 

entry and exit points of the area. 
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Parameters 

N : total number of disjoint areas and the base station. 

𝐷𝑖𝑙𝑗𝑘 : distance between point l of area i to point k of area j. 

𝐷′
𝑖𝑙𝑘𝑠 : distance between point l to point k of area i using pattern s. 

𝑃𝑖𝑙𝑘𝑠 : probability of detecting target by flying from point l to point k in area 

i using pattern s. 

Decision Variables 

𝑦𝑖𝑙𝑗𝑘 = {
1, if the UAV flies from point l of area i to point k of area j. 

0, otherwise.                                                                            
  

𝑧𝑖𝑙𝑘𝑠 = {
1, if the UAV flies from point l to point k of area i using pattern s.

0, otherwise.                                                                                                
 

𝑢𝑖  : node potential of area i that indicates the order of the corresponding 

area in the tour. 

Model 

(Minisum ASP) 

𝑴𝒊𝒏 ∑ 𝐷𝑖𝑙𝑗𝑘𝑦𝑖𝑙𝑗𝑘

𝑖𝑙𝑗𝑘

+ ∑ 𝐷′
𝑖𝑙𝑘𝑠𝑧𝑖𝑙𝑘𝑠

𝑖𝑙𝑘𝑠

 (2) 

Subject to  

∑ y𝑖𝑙𝑗𝑘

𝑖𝑙𝑘

= 1 ∀𝑗 = 1, … , 𝑁 (3) 

∑ y𝑖𝑙𝑗𝑘

𝑗𝑙𝑘

= 1 ∀𝑖 = 1, … , 𝑁 (4) 

∑ 𝑧𝑖𝑙𝑘𝑠

𝑙𝑘𝑠

= 1 ∀𝑖 = 2, … , 𝑁 (5) 

∑ 𝑧𝑖𝑙𝑘𝑠

𝑘𝑠

≤ ∑ 𝑦𝑗𝑘𝑖𝑙

𝑗𝑘

 ∀𝑙 = 1, … ,8, 𝑖 = 2, … , 𝑁 (6) 

∑ 𝑧𝑖𝑙𝑘𝑠

𝑙𝑠

≤ ∑ 𝑦𝑖𝑘𝑗𝑙

𝑗𝑙

 ∀𝑘 = 1, … ,8, 𝑖 = 2, … , 𝑁 (7) 
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𝑢𝑖 − 𝑢𝑗 + 𝑁 ∑ 𝑦𝑖𝑙𝑗𝑘

𝑙𝑘

≤ 𝑁 − 1 ∀𝑖, 𝑗 = 2, … , 𝑁, 𝑖 ≠ 𝑗 (8) 

𝑢𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑁 (9) 

𝑦𝑖𝑙𝑗𝑘 ∈ {0,1}  ∀𝑖𝑙𝑗𝑘 ∈ {(𝑖, 𝑙, 𝑗, 𝑘)|𝑖 ≠ 𝑗, 𝑖 = 1 ∧ 𝑙 = 1, 𝑗 = 1 ∧ 𝑘 = 1} (10) 

𝑧𝑖𝑙𝑘𝑠 ∈ {0,1}  ∀𝑖𝑙𝑘𝑠 ∈ {(𝑖, 𝑙, 𝑘, 𝑠)|𝑖 ≠ 1, 𝑙 ≠ 𝑘} (11) 

The objective function consists of two parts. The first part reflects the total distance 

taken between the rectangular areas, and the second part implies the distance traveled 

inside the target regions. Constraint set (3) guarantees that the air vehicle only leaves 

from one exit point from a rectangle or base. Similarly, Constraint set (4) guarantees 

that the air vehicle only enters the rectangle from one entry point to a rectangle or 

base. Constraint set (5) ensures that for each rectangle, only one pattern is used. 

Constraint sets (6) and (7) indicate that the rectangles' patterns match the exit and 

entry points used by the air vehicle. Constraint (8) is used for the sub tour 

elimination. Constraint (9) ensures to have positive sub tour elimination variables. 

The rest of the constraints (10) and (11) are the binary constraints for decision 

variables. 

3.1.2 Mathematical Model: Maximin ASP 

ASP can also be modified to maximize the efficiency of the concerning mission. The 

target may constitute great importance which eventually makes the success of the 

mission vital. In such cases, the minimum target detection probability is intended to 

be maximized by Maximin ASP. Since distance is not acknowledged by the 

objective, a distance capacity limit is applied to the model in pursuance of restraining 

the flight distance of the air vehicle with fuel consumption factor kept in sight. The 

mathematical model of Maximin ASP is described below (Karasakal, 2016):  
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𝑀 : maximum distance the UAV can fly. 

(Maximin ASP) 

𝑴𝒂𝒙 𝛼 (12) 

Subject to  

Constraints (3) − (11) 

∑ 𝐷𝑖𝑙𝑗𝑘𝑦𝑖𝑙𝑗𝑘

𝑖𝑙𝑗𝑘

+ ∑ 𝐷′
𝑖𝑙𝑘𝑠𝑧𝑖𝑙𝑘𝑠

𝑖𝑙𝑘𝑠

≤ 𝑀  (13) 

∑ 𝑃𝑖𝑙𝑘𝑠𝑧𝑖𝑙𝑘𝑠

𝑙𝑗𝑘

≥ 𝛼 ∀𝑖 = 2, … , 𝑁 (14) 

𝛼 ≥ 0 (15) 

The Maximin ASP employs all constraints from (3) to (11). Additionally, the 

objective function consists of a single variable. It is connected with the constraint set 

(14). Thus, the minimum target detection probability becomes the highest probability 

value. Constraint (13) limits the total distance traveled by the air vehicle. Finally, 

constraint (15) is a nonnegativity restriction for added α variable. 

3.1.3 Mathematical Model: MASP 

The same problem is viewed by MASP from a multi objective perspective. Two 

conflicting objectives of Minisum ASP and Maximin ASP are studied at once. 

MASP model is given below (Karasakal, Karasakal, and Maraş 2020): 

(MASP) 

𝑴𝒊𝒏 ∑ 𝐷𝑖𝑙𝑗𝑘𝑦𝑖𝑙𝑗𝑘

𝑖𝑙𝑗𝑘

+ ∑ 𝐷′
𝑖𝑙𝑘𝑠𝑧𝑖𝑙𝑘𝑠

𝑖𝑙𝑘𝑠

 (2) 
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𝑴𝒂𝒙 𝛼 (12) 

Subject to  

Constraints (3) − (11) 

Constraints (13) − (15)   

3.2 The Proposed Model: Aerial Surveillance for a Homogenous Fleet 

(ASP-H) 

In Minisum ASP, only a single vessel is taken into consideration. Even though it is 

an efficient model, a fleet of UAVs demands a more complex model. Since that is 

the case, this study sides with the ASP-H model. As the area to be searched grows 

larger, accomplishing the mission with a single UAV becomes more challenging and 

even infeasible. The assumptions of the proposed model are listed below. 

• The UAV fleet is identical, and each has the same flight distance limit. 

• The mission plan is considered on a 2D plane. Therefore, the altitude of 

UAVs is ignored. 

• The distance taken by the turn of air vehicles is ignored. 

• The UAVs are assumed to take off and start the mission simultaneously. 

• The collision risk of air vehicles is ignored. 

The ASP-H model is given below: 

Indices 

t : index of the vehicle used in the mission. 

Parameters 

M : total number of UAVs. 
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C : maximum flight range of each UAV 

𝐷′
𝑖𝑙𝑘 : distance between point l to point k of area i. 

Decision Variables 

𝑦𝑖𝑙𝑗𝑘𝑡 = {
1, if UAV t flies from point l of area i to point k of area j.     
0, otherwise.                                                                                      

 

𝑧𝑖𝑙𝑘𝑡 = {
1, if UAV t flies from point l to point k of area i by a pattern.       
0, otherwise.                                                                                   

 

Model 

𝑴𝒊𝒏 ∑ 𝐷𝑖𝑙𝑗𝑘𝑦𝑖𝑙𝑗𝑘𝑡

𝑖𝑙𝑗𝑘𝑡

+ ∑ 𝐷′
𝑖𝑙𝑘𝑧𝑖𝑙𝑘𝑡

𝑖𝑙𝑘𝑡

 (16) 

Subject to  

∑ ∑ 𝑦1𝑙𝑗𝑘𝑡

𝑙𝑘𝑡

𝑁

𝑗=2

= 𝑀  (17) 

∑ ∑ y𝑖𝑙1𝑘𝑡

𝑙𝑘𝑡

𝑁

𝑖=2

= 𝑀  (18) 

∑ 𝑦1𝑙𝑗𝑘𝑡

𝑙𝑘𝑡

≤ 1 ∀𝑗, 𝑗 ≠ 1 (19) 

∑ ∑ 𝑦1𝑙𝑗𝑘𝑡

𝑙𝑘

𝑁

𝑗=2

≤ 1 ∀𝑡 (20) 

∑ 𝑦𝑖𝑙1𝑘𝑡

𝑙𝑘𝑡

≤ 1 ∀𝑖, 𝑖 ≠ 1 (21) 

∑ ∑ 𝑦𝑖𝑙1𝑘𝑡

𝑙𝑘

𝑁

𝑖=2

≤ 1 ∀𝑡 (22) 

∑ 𝑦𝑖𝑙𝑗𝑘𝑡

𝑖𝑙𝑘𝑡

= 1 ∀𝑗, 𝑗 ≠ 1 (23) 

∑ 𝑦𝑖𝑙𝑗𝑘𝑡

𝑗𝑙𝑘𝑡

= 1 ∀𝑖, 𝑖 ≠ 1 (24) 
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𝑢𝑖 − 𝑢𝑗 + (𝑁 − 𝑀) ∑ 𝑦𝑖𝑙𝑗𝑘𝑡

𝑙𝑘𝑡

≤ 𝑁 − 𝑀 − 1 ∀𝑖, 𝑗, 𝑖 ≠ 𝑗 ≠ 1 (25) 

∑ 𝑧𝑖𝑙𝑘𝑡

𝑙𝑘𝑡

= 1 ∀𝑖, 𝑖 ≠ 1 (26) 

∑ 𝑧𝑖𝑙𝑘𝑡

𝑘

≤ ∑ 𝑦𝑗𝑘𝑖𝑙𝑡

𝑗𝑘

 ∀𝑙, 𝑖, 𝑡, 𝑖 ≠ 1 (27) 

∑ 𝑧𝑖𝑙𝑘𝑡

𝑙

≤ ∑ 𝑦𝑖𝑘𝑗𝑙𝑡

𝑗𝑙

 ∀𝑘, 𝑖, 𝑡, 𝑖 ≠ 1 (28) 

∑ 𝐷𝑖𝑙𝑗𝑘𝑦𝑖𝑙𝑗𝑘𝑡

𝑖𝑙𝑗𝑘

+ ∑ 𝐷′
𝑖𝑙𝑘𝑧𝑖𝑙𝑘𝑡

𝑖𝑙𝑘

≤ 𝐶 ∀𝑡 (29) 

𝑢𝑖 ≥ 0 ∀𝑖 (30) 

𝑦𝑖𝑙𝑗𝑘𝑡 ∈ {0,1}  ∀𝑖𝑙𝑗𝑘𝑡 ∈ {(𝑖, 𝑙, 𝑗, 𝑘, 𝑡)|𝑖 ≠ 𝑗, 𝑖 = 1 ∧ 𝑙 = 1, 𝑗 = 1 ∧ 𝑘 = 1} (31) 

𝑧𝑖𝑙𝑘𝑡 ∈ {0,1}  ∀𝑖𝑙𝑘𝑡 ∈ {(𝑖, 𝑙, 𝑘, 𝑡)|𝑖 ≠ 1, 𝑙 ≠ 𝑘} (32) 

A route is created with ASP-H model by minimizing the total distance traveled by 

UAVs in regard to the distance capacity restrictions of UAVs. The model's first and 

second constraints (17) and (18) define the exits and entries to the base station, node 

1. There are M air vehicles that take off from the base, and M air vehicles land at the 

base. Constraints (19) and (20) make sure assigning the take-off of different UAVs 

to avoid assigning one UAV to multiple take-offs. Constraints (21) and (22) apply 

the same logic to the landing process to avoid assigning multiple landings to a single 

UAV. Constraints (23) and (24) are typical assignment constraints that push the 

model to create tours to visit the rectangular areas. Constraint (23) ensures that only 

one UAV can reach a rectangular area using only one entry point from only one exit 

point of another rectangular area. Constraint (24) ensures that only one UAV can 

leave a rectangular area using only one exit point and reach another rectangle using 

only one entry point. Constraint (25) is sub tour elimination constraints (Miller, 

Tucker, and Zemlin, 1960). These constraints can sketch the outer tour. After that 

point, the model focuses on inner pattern assignment. Constraint (26) is the 
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assignment of inner patterns of the rectangular areas. Each rectangle must be scanned 

with a specified pattern. Constraints (27) and (28) allow the model only to choose 

the patterns that use same entry and exit point with the outer tour defined by the same 

model. Therefore, the inner pattern’s entry and exit points are aligned with the outer 

tour's entry and exit points. For example, if the UAV enters the area through entry 

point number 1, patterns that start from other entry points must be eliminated. 

Distance restrictions for each air vehicle are defined by constraint (29). Constraint 

(30) ensures nonnegativity of sub tour elimination variables. Constraints (31) and 

(32) are binary constraints for decision variables. The objective function can be seen 

in Equation (16) which minimizes the total distance taken by UAVs. 
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CHAPTER 4  

4 SOLUTION APPROACH 

In this chapter, two heuristic algorithms are proposed for ASP-H. Since ASP-H is 

NP-Hard, one cannot solve any instance of the problem to optimality. Thus, efficient 

and fast solution approaches are designed and proposed. 

The proposed algorithms use Concorde TSP solver (Applegate et al. 1998) to 

generate an initial solution. Some modifications are applied to the initial solution 

step by step to reach a good feasible solution. Concorde TSP Solver is described in 

Section 4.1 in order to depict the proposed solution approach and the way to 

construct a structure to apply the solver to ASP-H. In Section 4.2, heuristic 

algorithms are explained. 

4.1 Concorde TSP Solver and Application to ASP-H  

In this section, two subsections are introduced. The first subsection explains the 

Concorde TSP solver, and the second subsection describes the application of the 

Concorde solver to ASP-H. 

4.1.1 Concorde TSP Solver 

Concorde TSP solver is first introduced by Applegate et al. (1998) as an algorithm. 

It is written in ANSI C programing language, which is shared online for academic 

applications. 

Concorde TSP solver uses the cutting plane method introduced by Dantzig, 

Fulkerson, and Johnson (1954). A relaxed TSP Linear Programming (LP) model is 

solved by the simplex algorithm, and a feasible solution is generated for that relaxed 
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TSP. This feasible solution is called a fractional tour since it is an optimal solution 

to the relaxed TSP. Then, elements of the fractional tour that cause infeasibility to 

the actual TSP structure are added to the relaxed TSP LP model as a constraint to 

avoid the current infeasibility. The relaxed TSP LP with additional constraints is 

solved again. This procedure continues until an optimal solution is reached for the 

actual TSP. In that process, the optimality is controlled due to weak and strong 

duality theorems. These additional constraints are called cutting planes, and the 

method is called the cutting plane method. The Concorde solver adopts the cutting 

plane method and makes it applicable to the problems that are symmetric TSP and 

similar problem structures. 

The performance of the Concorde TSP solver is measured by solving TSPLIB 

instance library which consists of one hundred ten problems with various numbers 

of cities (Reinelt 1991). The computer has the following hardware features: a single 

processor of a dual-processor 2.8 GHz Intel Xeon PC with a 533 MHz front-side-bus 

and 2 gigabytes of RAM. The ILOG CPLEX (Version 6.5) linear programming 

solver is used in these computations. The results of Concorde solver are very 

promising. For example, it solves the instance pr2392 with 2392 nodes in 35.04 

seconds. 

The proposed algorithms use Concorde solver as a tool. For that reason, the ASP 

structure must be reflected as a symmetrical TSP. In the following subsection, this 

transformation is described. 

4.1.2 Transformation of ASP-H to Symmetrical m-TSP 

Concorde solver is a symmetric TSP solver. Thus, ASP-H must be defined in a 

symmetric m-TSP matrix form. A multilayered transformation procedure is applied 

to meet the demand of the solver. Firstly, ASP is defined as an Asymmetric 

Generalized TSP (AGTSP). Noon and Bean (1993) introduce a methodology that 

turns AGTSP into a Clustered TSP (CTSP). Then, CTSP is converted into an 
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Asymmetric TSP (ATSP). A technique obtaining Symmetric TSP (STSP) from 

ATSP is proposed in Ben-Arieh, et al. (2003). Consequently, the new structure 

satisfies the need for the Concorde solver. Finally, ASP-H is a problem that uses 

multiple aerial vehicles. Due to that, STSP is transformed into an m-TSP structure 

using a method suggested in Gorenstein (1970). 

Before describing the transformation, different problem types used in the procedure 

are defined below: 

In TSP, it is assumed that there is a travelling salesperson visiting several cities. The 

objective of the problem is to find the minimum distance Hamiltonian cycle. The 

salesperson must visit all the cities. If arcs between the nodes have direction, the 

problem is defined as ATSP. Otherwise, it is STSP. 

Being a variant of TSP, GTSP is explained as follows: There is a travelling 

salesperson assumed to visit multiple cities. These cities are gathered in areas and 

the salesperson must visit all the areas by visiting only one city in each area. The 

salesperson starts from a point and must find the shortest tour that visits all areas 

once. The problem's structure may lead to some differences, and this changes the 

definition of the problem. If the graph's arcs have a direction, the problem is 

Asymmetric GTSP. Otherwise, it is Symmetric GTSP. 

Another extension is CTSP. There are clusters that include several nodes to visit. 

One salesperson must visit all the clusters and the nodes in the clusters consecutively. 

The salesperson does not visit another cluster without visiting all nodes of the current 

cluster. 

In the beginning, ASP must be reflected as GTSP. There are areas to be observed, 

which can be assumed as clusters. The UAV must leave an area from an exit/entry 

point and go to another area. After that, it enters and departs from two different 

exit/entry points. If the travel between two nodes is defined as follows, ASP can be 

reflected as GTSP. 
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• A UAV departs an area from an exit point and goes to another area 

• The area is surveilled by the UAV using a pattern. 

• The UAV reaches the exit point 

Thus, if the travel between two nodes is defined from one exit point to another the 

problem can be reflected as AGTSP. The graph of the problem has directions because 

the nodes do not explain each other in the same way in both directions. 

𝐼 is an AGTSP instance and defined as a directed graph 𝐺(𝑁, 𝐴), where 𝑁 is the set 

of nodes, 𝑆 is the set of areas, 𝐴 is the set of arcs and the cost vector is 𝑐. 

Set 𝐴 defines the directed arcs between nodes that have nonnegative costs 𝑐𝑖𝑗 ≠

𝑐𝑗𝑖 ≥ 0, (𝑖, 𝑗) ∈ 𝐴. The nodes are in 𝑚 non-intersecting clusters. 𝑖. 𝑒.  𝑁 = 𝑆1 ∪ 𝑆2 ∪

… ∪ 𝑆𝑚 𝑤𝑖𝑡ℎ 𝑆𝑖 ∩ 𝑆𝑗 = ∅ , ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗.  

In ASP, sixteen nodes are defined for each rectangular area except the base. Each 

node represents the possible entry and exit points that the UAV can use. Thus, if 

there is a problem with 𝑛 − 1 rectangular areas, the graph of the problem has 16 ∗

(𝑛 − 1) + 1 nodes in AGTSP. Because one node is base, the rest of the nodes are 

entry/exit point combinations inside the rectangular areas. The node representation 

is as follows: the base node is the starting point and reflected as index 1, the rest of 

the regions would be shown as 2(1), 2(2), … , 2(16), 3(1), 3(2), … ,  𝑛(16) 

respectively. In that sense, the first number reflects the cluster (rectangle), and the 

number inside parentheses shows the exit and the entry points combination used by 

the UAV. The references for inner indexes are shown in Table 4.1. 
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Table 4.1 Reference table for indexes of entry/exit point combinations 

Index Entry/Exit Index Entry/Exit 

(1) 1-5 (9) 5-1 

(2) 1-8 (10) 5-4 

(3) 2-3 (11) 6-2 

(4) 2-6 (12) 6-7 

(5) 3-2 (13) 7-3 

(6) 3-7 (14) 7-6 

(7) 4-5 (15) 8-1 

(8) 4-8 (16) 8-4 

 

For example, moving from node 2(5) to 3(8) means that the UAV exits area 2 from 

entry/exit point 2 and goes to area 3's entry/exit point 4, finishes surveillance in the 

area, and exits from area 3's entry/exit point 8. From the other side, node 3(8) to 

2(5) implies that the UAV exits area 3 from entry/exit point 8 and goes to area 2's 

entry/exit point 3, finishes surveillance in the area, and exits from area 2's entry/exit 

point 2. Consequently, both representations use different paths. Therefore, the 

problem is asymmetric. 

In Figure 4.1, the dash dotted line refers to moving from node 2(5) to 3(8), the 

dashed line refers to moving from node 3(8) to 2(5). 
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Figure 4.1. Two path examples that show asymmetric structure of the defined 

GTSP. 

Noon and Bean (1991) describes a transformation technique to reflect an AGTSP as 

a CTSP. The study shows that the transformation is possible when the cost between 

the nodes in the same cluster is set to zero in a respective manner. However, if the 

vehicle comes from another group (cluster), the problem must reflect the exact cost 

value. So, in a CTSP, when a vehicle gets inside a cluster, the vehicle pays a fee for 

entering. The vehicle visits each node respectively in the cluster without suffering 

any cost. 

The CTSP can be described using the same notation: 

𝐼′ is a CTSP instance that is on a graph 𝐺(𝑁′, 𝐴′) where 𝑁′ is the set of nodes, 𝐴′ is 

the set of arcs and a vector with nonnegative arc costs 𝑐′. Additionally, 𝑁′ is a union 
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of 𝑚 non-intersecting clusters, 𝑁′ = ⋃ 𝑆𝑖
𝑚
𝑖=1  . For each cluster, it is assumed that the 

member nodes have an index order, 𝑖1, 𝑖2, … , 𝑖𝑟 ∈  𝑆𝑖 and |𝑆𝑖| = 𝑟. 

The cost data transformation from AGTSP to CTSP, which is construction of arc set 

𝐴′, is below: 

The nodes in each cluster with |𝑆𝑖| = 𝑟 > 1 construct directed arcs according to the 

index ordering at the former paragraph. Consequently, the following arcs are 

constructed: (𝑖1, 𝑖2), (𝑖2, 𝑖3), (𝑖3, 𝑖4), … , (𝑖𝑟−1, 𝑖𝑟), (𝑖𝑟 , 𝑖1) in 𝐴′ with a cost of zero. 

That is 𝑐′
𝑖1𝑖2 = 𝑐′

𝑖2𝑖3 = ⋯ = 𝑐′
𝑖𝑟−1𝑖𝑟 = 𝑐′

𝑖𝑟𝑖1 = 0. For intercluster movement, each 

arc (𝑖𝑗 , 𝑘𝑙) ∈ 𝐴 is an identical arc for (𝑖𝑗−1, 𝑘𝑙) ∈ 𝐴′that is 𝑐′
𝑖𝑗−1𝑘𝑙 = 𝑐𝑖𝑗𝑘𝑙 . In 

addition, each arc (𝑖𝑗 , 𝑘𝑙) ∈ 𝐴, 𝑟 = |𝐶𝑖| creates an arc (𝑖𝑗 , 𝑘𝑙) ∈ 𝐴′ with cost 𝑐′
𝑖𝑟𝑘𝑙 =

𝑐𝑖1𝑘𝑙 . 

In short, while transferring the structure of the problem from AGTSP to CTSP, inner-

cluster arcs reflect no cost. For intercluster arcs, if the salesperson goes from node 

index (𝑖 − 1) of cluster 𝑓 to index 𝑗 of cluster 𝑘, the model must reflect the cost 

between the index 𝑖 of cluster 𝑓 to index 𝑗 of cluster 𝑘. The related example is 

visually presented in Figure 4.2. In Figure 4.2, dotted circles are clusters, and regular 

circles are inner nodes. While dashed arrows are reflecting costs, dotted arrows are 

reflecting no cost. So, the intercluster movement has a cost, but the internal cluster 

movement is cost-free. 
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Figure 4.2. A visual representation of air vehicle’s movement in and between 

clusters. 

In Noon and Bean (1991) it is also stated that the transformation from CTSP to ATSP 

is handled by adding a Big M value to intercluster arcs. Thus, the problem structure 

is transformed into ATSP. Another transformation is applied to the current structure 

of the problem In Ben-Arieh et al. (2003) a standard reduction is used to transform 

ATSP into a symmetric one. Each node 𝑥𝑖 becomes three nodes that are denoted as 

𝑥𝑖
+, 𝑥𝑖

0 and 𝑥𝑖
−. The edge costs of 𝑥𝑖

− to 𝑥𝑖
0, and 𝑥𝑖

0 to 𝑥𝑖
+, are set to zero. Each 

arc that is denoted as 𝑥𝑖
+ to 𝑥𝑗

− has the cost of 𝑥𝑖 to 𝑥𝑗. The rest of the arc values 

take a Big M value greater than the total cost of each arc. 

For 𝑛 areas of interest (including the base node), ATSP has the same number of 

nodes of AGTSP that is 16 ∗ (𝑛 − 1) + 1. Therefore, ATSP to TSP transformation 

for 𝑛 rectangular areas (including the base node) is equal to 3 ∗ (16 ∗ (𝑛 − 1) + 1). 
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Finally, ASP–H is transformed into a TSP. After that point, it is possible to solve 

ASP with Concorde. 

Under these conditions, Concorde TSP solver becomes easily applicable to ASP with 

a single UAV. Since ASP-H considers multiple platforms, a final transformation 

must be applied. The current ATSP must be transformed into a m-TSP. 

m-TSP aims to find the minimum total distance traveled among a predefined number 

of cities using m salesmen.  

In Gorenstein (1970), TSP problems are transformed into a m-TSP matrix by adding 

𝑚 − 1 home city nodes to the existing graph. Arcs that connect the home cities are 

set to have a 𝐵𝑖𝑔 𝑀 cost value which prevents the model to use these specific arcs 

in the solution. Therefore, a tour starts from actual home city, and it cannot end 

without visiting the other home cities. An illustration of a full graph example for five 

cities and two salesmen is shared in Figure 4.3. 
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Figure 4.3. Transformation of a TSP graph to 2-TSP graph. 

In Figure 4.3, a TSP with five cities is shown at the upper side. An additional home 

city node is added to the graph to transform the problem into a 2 TSP at the bottom. 

The dotted circle and arcs are added to the graph. The home cities are denoted with 

negative index. A feasible solution for 2-TSP such as (-1, 4, 2, 3, -2, 5, -1) is decoded 

into two tours, (1, 4, 2, 3, 1) for salesperson 1 and (1, 5, 1) for salesperson 2. 

4.2 Proposed Heuristic Methods 

In this section, two different procedures are described. Then, two heuristic 

algorithms that utilize different combinations of the procedures are presented. 
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At the beginning, the subsection 4.2.1 starts with explanation of some terms that are 

used to clarify the features of the procedures. A general structure for the procedures 

is explained. Accordingly, the two procedures are described in subsections 4.2.1.1 

and 4.2.1.2 which are Change and Exchange procedures respectively. Subsections 

4.2.2 and 4.2.3 describe the heuristic methods, Heuristic Based on Concorde (HBC) 

and Heuristic based on Neighborhood Search (HBN). 

4.2.1 Procedures 

In this subsection, two procedures are described. These procedures are designed 

considering computational burden and increasing chance of obtaining good 

solutions. The procedures adopt different search strategies. While one procedure 

uses Concorde solver for new solutions, the other adopts Neighborhood Search. 

Before describing the procedures, used terms are explained below. 

• Current Solution: The solution that changes at the end of any iteration of a 

procedure. It is used to produce new solutions. The current solution is 

denoted as CS. 

• Basic Move: Basic move is the set of rules adopted by the procedure to 

produce new solutions over the CS. 

• Possible Solutions: Possible solutions are the newly produced solutions after 

applying the basic move to the CS in an iteration. They are denoted as PS. 

• Best Solution: It is the best solution found at the end of the execution. The 

best solution is denoted as BS. 

• Termination Conditions: Conditions that stop the procedure. If the 

procedure reaches the defined state, it stops the execution. 

The procedures employ an initial solution in the beginning. Then the initial solution 

is set as CS. The defined basic move for the procedures is applied and produces a set 

of new solutions which are denoted as PS. If there are one or more feasible solutions 

in PS, the best one is chosen to be BS assuming that it dominates the current best. If 



 

 

44 

the procedure reaches the defined state, the execution stops. An illustration of the 

generic procedure flow is depicted in Figure 4.4. 

 

Figure 4.4. Flow chart of the procedures. 

The Change procedure aims to find an improved solution by changing the nodes in 

tours. 

The Exchange procedure tries to improve the output of the Change procedure. Hence, 

one of the procedure’s objectives is to investigate and find a solution to the relevant 

problem where the other aims for improvement. In the following sections, the 

procedures are explained in more detail. 

4.2.1.1 The Change Procedure Based on Concorde and Neighborhood 

Search 

An initial solution must be created as the first step. The Concorde TSP solver is used 

to generate with an initial solution. In the previous sections, a m-TSP matrix structure 

is constituted for ASP-H. The Concorde TSP solver obtains an initial solution using 

the m-TSP matrix. Subsequently, the initial solution is set as CS, and the 

investigation of BS starts. 
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The termination condition and the basic move are defined as follows for the Change 

procedure. 

• Basic Move: A rectangle of the largest tour is removed and added to 

another tour. The new tours are solved by the Concorde Solver or 

manually inserted into the existing tours by adopting neighborhood 

search. 

• Termination Condition: If the initial m-TSP solution is feasible, 

then the optimal solution is found, hence the procedure terminates 

itself. Otherwise, the procedure continues to investigate. If the largest 

tour of CS is switched to another air vehicle during the execution, then 

the procedure terminates itself. 

The basic move forces the procedure to find feasible solutions and, if so, better 

solutions by changing the allocation of the rectangles of the largest tour in the current 

state. Practically, the procedures produce feasible solutions for test instances. 

However, there is no guarantee that the procedure generates a feasible solution for 

all problem instances. A pseudocode of the Change procedure is proposed in Table 

4.2: 
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Table 4.2 Pseudocode of the Change procedure 
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Two different approaches are utilized for generating the feasible solutions: The 

dotted parts in lines 9 and 10 in Table 4.2 can be filled with in two ways.  

• 𝐂𝐡𝐚𝐧𝐠𝐞 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐂𝐨𝐧𝐜𝐨𝐫𝐝𝐞: The procedure solves the new 

𝐾𝑖 and 𝐾𝑚𝑎𝑥 using Concorde Solver  

• 𝐂𝐡𝐚𝐧𝐠𝐞 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐡𝐨𝐨𝐝 𝐒𝐞𝐚𝐫𝐜𝐡: The procedure 

evaluates the best rectangular area one by one and places the rectangular area 

in the best way possible. 

If the procedure uses the Concorde based method, it solves both tours separately by 

using the Concorde solver. Otherwise, the removed rectangle is inserted into the 

related tour by evaluating each possible option. The minimum distanced option 

becomes the new PS. 

The Neighborhood Search based method evaluates where to insert the removed 

rectangle to the new tour 𝐾𝑖 by examining all possible insertions between the existing 

rectangular areas. 

An illustration of the PS generation of the Change procedure based on Concorde for 

9 rectangular areas and 3 air vehicles is given in Figure 4.5. 
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Figure 4.5. An illustration of the PS generation of the Change procedure based on 

Concorde. 

An illustration of the PS generation of the Change procedure based on Neighborhood 

Search for 6 rectangular areas and 2 air vehicles is given in Figure 4.6. 
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Figure 4.6. An illustration of the PS generation of the Change procedure based on 

Neighborhood Search. 

In Figure 4.6, the numbers outside of the parenthesis stand for the rectangular areas, 

and the numbers in the parenthesis stand for the entry/exit point combinations. Two 

tours placed on the left side show the largest tour and one of the small tours in CS. 

On the right side, rectangle 5 is removed from the largest tour and placed at the top. 

Each space is evaluated below side in Figure 4.6 for all entry/exit point 

combinations. Consequently, the removed rectangle is placed to the space using the 

entry/exit point combination that provides minimum distance. The related solution 

is set as a PS. 

4.2.1.2 The Exchange Procedure 

The Exchange procedure improves the solution by exchanging the rectangular areas 

between the largest tour and smaller tours. The basic move and termination condition 

for the Exchange procedure is explained below: 

Base 2(4) 8(13) 7(11) Base

Space 1

Base 5(1) 3(6) 9(7) Base

Base 5(3) 2(4) 8(13) 7(11) Base Base 5(2) 3(6) 9(7) Base

Base 3(6) 9(7) Base .

.

.

Base 5(16) 3(6) 9(7) Base

Space 2

Base 3(6) 5(1) 9(7) Base

Base 3(6) 5(2) 9(7) Base

.

.

.

Base 3(6) 5(16) 9(7) Base

.

.
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• Basic Move: One of the rectangles in the largest tour is exchanged with 

another rectangle in one of the smaller tours. The two newly generated 

rectangle sets are solved with Concorde solver, and the tours are routed. If 

there are any other tours, they construct a new solution with the new tours 

together. 

• Termination Condition: If BS cannot improve in the current iteration, the 

procedure terminates itself. 

The Exchange procedure has a more straightforward composition rather than the 

Change procedures. The termination is rapid and directly aims for improvement. 

Similarly, each exchange of the rectangular areas creates new tours to solve, just like 

in the Change procedures. The Exchange procedure overcomes this challenge by 

using the Concorde solver. Despite the time consumption of the Concorde solver, it 

gives better solutions in comparison to Neighborhood Search. Hence, the Concorde 

solver becomes ideal for the Exchange procedure. 

A pseudocode for the Exchange procedure is shown in Table 4.3 as follows in detail 

step by step: 
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Table 4.3 Pseudocode of the Exchange procedure. 
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4.2.2 The Heuristic Based on Concorde (HBC) 

The HBC is the combination of two procedures. It uses the Change procedure to 

investigate the related problem and obtain a good solution. In the improvement 

phase, the obtained solution from the Change procedure is imported into the 

Exchange procedure. The Exchange procedure seeks a better solution. 

The HBC uses the Change procedure based on Concorde. Despite the Concorde 

Solver being a fast tool, the repetitive execution consumes significant time. 

Therefore, the HBC is expected to be an exhausting heuristic in terms of time. 

However, it is more likely to obtain better solutions. 

HBC method is described as follows: 

Step 0 : Initialize the 𝐵𝑆. 

Step 1 : Use the Change procedure based on Concorde to generate a 

good solution and set the output solution as 𝐵𝑆 . 

Step 2 : Use the Exchange procedure to improve the 𝐵𝑆. 
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4.2.3 The Heuristic Based on Neighborhood Search (HBN) 

The HBN uses the Change procedure based on Neighborhood Search. The Change 

procedure generates a good solution, afterward the Exchange procedure is executed. 

The HBN method is shown as follows: 

Step 0 : Initialize the 𝐵𝑆. 

Step 1 : Use the Change procedure with Neighborhood Search to generate a 

good solution and set the output solution as 𝐵𝑆 . 

Step 2 : Use the Exchange procedure to improve the 𝐵𝑆. 

 

The reason behind these algorithms is to see whether it is logical to use exhausting 

but rapid solvers (Concorde) to obtain reasonable solutions in exchange of high 

memory usage and significant time consumption. On the other hand, instead of using 

Concorde solver, is it sufficient to use faster basic moves to obtain new solutions. 

Therefore, the produced solutions may not show better results, but the solution time 

significantly decreases. 

In short, the proposed heuristics obtain reasonable solutions. However, the 

performance differences between Concorde solver and the Neighborhood Search 

method are investigated in the computational results chapter. 
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CHAPTER 5  

5 COMPUTATIONAL RESULTS 

In this chapter, the proposed mathematical model and the heuristics are evaluated. 

ASP-H is a new problem. Therefore, there is not a benchmark set already generated. 

A new benchmark set is generated, and distance capacity values are calculated 

according to a procedure used for generating various benchmark problems is 

described in Section 5.1. Then, a new methodology is suggested to obtain strict 

distance capacity values in Section 5.2. Finally, the results are discussed in Section 

5.3. 

5.1 ASP-H Problem Generation 

There is no benchmark instance produced for this specific problem type. Hence, 

twenty-five test instances are generated using the same test set used in Karasakal 

(2016) to evaluate the mathematical model and algorithms. The test set used in 

Karasakal (2016) is shared in APPENDIX A. 

There are 60 disjoint rectangles placed on a two-dimensional plane. Various number 

of rectangles are randomly chosen using a uniform distribution. Including the base 

station, new benchmark instances are generated for 7, 10, 15, 20, and 25 number of 

rectanles. While the selection of rectangles is completed, the inner path lengths of 

rectangles are calculated according to the coordinates of rectangles. For each number 

of rectangle, 5 instances are created. So, in total, 25 different instances are prepared 

to be tested. 

A test instance for 10 rectangles instances, including base (origin), is shown in Figure 

5.1. 
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Figure 5.1. A 2-D visualization of 10 rectangles instance including the base (origin) 

After the generation of different test instnaces, each instance is considered for 2, 3, 

4, and 5 air vehicles. Therefore, one generated instance is used for four other 

benchmark instances. For that reason, one hundred different benchmark instances 

are generated for evaluation. 

The instance names are given in a rule. The following term is an example to explain 

the rule: "IN_N#_M#_I#". The number after the parameter N explains the number 

of rectangles used in the problem, including the base. The number after M notation 

specifies the number of used air vehicles for the corresponding instance. Finally, the 

number after notation I remarks the index of the related instance type. For example, 

"IN_N7_M2_I1" means that, instance index 1 for 7 rectangles and 2 air vehicles. 

So far, the instances are generated. In the next section, the methodology to determine 

the distance capacity is given. 
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5.2 Specification of Distance Capacity Limit 

The flight distances for air platforms are calculated for each generated instance 

specifically. The methodology uses an upper and a lower bound to specify the exact 

number for the endurance values. If ASP-H model is relaxed by removing the 

capacity constraint, the model behaves like an m-TSP model. For example, the 

relaxed model is applied for two UAVs. The solution contains two tours, and the 

higher value is the maximum capacity value for ASP-H instance. If this value is used 

as a capacity limit for ASP-H, the same instance's solution does not change. This 

upper bound value is used to guarantee that the capacity constraints are meaningful 

for the ASP-H. The capacity limit should be less than the upper bound. 

On the other hand, the lower bound aims to produce a strict capacity value. For this 

reason, a myopic algorithm for a single vehicle is used to make a strict lower bound. 

One air vehicle starts from the base station and chooses the closest area of interest at 

that moment. After creating a Hamiltonian cycle, the output length value is divided 

by the number of UAVs used for the related problem. Therefore, a reasonable lower 

bound value is created for the instances. Consequently, a range for endurance is 

generated. Three different endurance values are found considering these bounds. 

These numbers are calculated as follow: 

𝐶𝑑 = {

𝐿𝐵 + 0.25 ∗ (𝑈𝐵 − 𝐿𝐵)
𝐿𝐵 + 0.50 ∗ (𝑈𝐵 − 𝐿𝐵)
𝐿𝐵 + 0.75 ∗ (𝑈𝐵 − 𝐿𝐵)

       
, if 𝑑 = 1
, if 𝑑 = 2
, if 𝑑 = 3

 (33) 

In this formulation, 𝑈𝐵 and 𝐿𝐵 stand for upper and lower bounds. Index d is a level 

indicator that underlines the difficulty level of an instance. While 𝑑 increases, the 

difficulty level of the instance decreases. 

Finally, the specified numbers for related instances applied for ASP-H. Then, a 

procedure is adopted to select the capacity limit as follows: 
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Step 1 : Apply 𝐶1 for ASP-H and solve the instance with Cplex. 

Step 2 : Does the model give a solution? 

If yes choose 𝐶1 as capacity and STOP, otherwise go to Step 3. 

Step 3 : Apply 𝐶2 for ASP-H and solve the instance with Cplex. 

Step 4 : Does the model give a solution? 

If yes choose 𝐶2 as capacity and STOP, otherwise go to Step 5. 

Step 5 : Apply 𝐶3 for ASP-H and solve the instance with Cplex. 

Step 6 : Does the model give a solution? 

If yes choose 𝐶3 as capacity and STOP, otherwise go to Step 7. 

Step 7 : Generate another test instance. 

5.3 The Results 

Before generating benchmark instances, the problem instance used in Karasakal 

(2016) is adapted for ASP-H with two UAVs. Also, the HBC and the HBN methods 

are applied to the corresponding instance and compared with the Cplex solution in 

Table 5.1. 

Table 5.1 The comparison table for the instance problem used in Karasakal (2016). 

CPLEX HBC HBN 

Gap (%) Value Time (Sec.) Gap (%) Value Time (Sec.) Gap (%) Value Time (Sec.) 

0.00 92.529 272.43 0.30 92.81 34.719 0.00 92.529 15.124 

 

For this instance, the HBN method dominates the HBC concerning time and gap 

ratio. The HBN found the optimal solution faster than the Cplex solver. On the other 

hand, the HBC method is also fast and gives a good solution with a 0.3% GAP ratio. 

In Figures 5.2 and 5.3, the solutions are illustrated. The parameters at the sides of the 

rectangular areas give information about used patterns, where 𝐷′ is the distance of 
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the corresponding pattern, t is the number of turns along with the pattern, and s is the 

track spacing. 

Figure 5.2. An illustration optimal solution for problem instance used in Karasakal 

(2016). 
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Figure 5.3. An illustration of the solution obtained with the HBC method for 

problem instance used in Karasakal (2016). 

After the generation of benchmark instances and the distance capacity values, it 

becomes applicable to gather computational results of the model. 

Example output series of a ten rectangular region problem including base is shown 

in Figures 5.4, 5.5, 5.6, 5.7. 
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Figure 5.4. An illustration of optimal solution of benchmark instance 

IN_10_M2_I1. 

 

Figure 5.5. An illustration of optimal solution of benchmark instance 

IN_10_M3_I1. 
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Figure 5.6. An illustration of optimal solution of benchmark instance 

IN_10_M4_I1. 

 

Figure 5.7. An illustration of optimal solution of benchmark instance 

IN_10_M5_I1. 
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The performance measures and the parameters that are used for the evaluation of the 

mathematical model and comparison between the mathematical model and heuristic 

algorithm results are listed as follows: 

• Time: The wall clock time consumption of the corresponding problem 

instance in terms of seconds. 

• Value: The objective function value of the corresponding problem for the 

solution found. 

• Status: If the run does not reach the 24 hours time limit the status is 

“Optimal”. If the run reaches the time limit, then the status is “Timelimit”. 

• GAP: The difference between the best-known solution and the best-known 

bound in optimization software at the moment. When the gap reaches zero 

percent, it means the optimal solution to the problem is found. The 

formulation of the gap measure is explained below: 

𝐺𝐴𝑃 =
𝑧𝑃 − 𝑧𝐷

𝑧𝑃
∗ 100 (34) 

Where 𝑧𝑃 is primal model value, and 𝑧𝐷 is dual model value. 

• GAP v.2: The difference between the mathematical model solution and the 

heuristic algorithm solution for the corresponding problem instance. The 

formulation is stated below: 

𝐺𝐴𝑃𝑣. 2 =
𝐴𝑂 − 𝐵𝐾

𝐵𝐾
∗ 100 (35) 

Where 𝐴𝑂 is the objective function value of the corresponding heuristic algorithm, 

and 𝐵𝐾 is the best-known solution of the corresponding problem instance found by 

optimization software. 
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• Time Ratio: The ratio of the time consumption of the heuristic algorithm to 

the time consumption of the optimization software. It is used to understand 

the time difference between the heuristic algorithm and optimization tool. 

𝑇𝑖𝑚𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝐻𝐴

𝑇𝑂𝑆
∗ 100 (36) 

Where 𝑇𝐻𝐴 is the wall clock time consumed by the corresponding heuristic 

algorithm, and 𝑇𝑂𝑆 is the wall clock time consumed by the optimization software. 

The problem instances are solved with IBM CPLEX optimization software version 

12.10. The hardware features on a personal computer with Intel(R) Xeon(R) E-

2246G processor, 16384 MB RAM, 6 cores, 12 CPU’s at ~ 3.6GHz clock speed. 

Since the solution of the problems consumes significant time, a time limit is set for 

each model run. Therefore, each problem is restricted to 86400 seconds. 

Additionally, a Cplex Optimization Studio function is used that is nodefileind. By 

default, the software uses RAM to record the solutions found. However, for many 

instances, the memory consumption increases and exceeds the memory capacity at 

hand. 

Consequently, nodefileind function is used at setting number three, which allows the 

software to use hard disk memory. Also, workdir parameter must be connected to a 

file (directory) to use nodefileind function. Otherwise, the software terminates the 

run because it cannot record the corresponding solution files. The computational 

results of the mathematical model are contained in APPENDIX B. 

The heuristic methods are written in C Programming Language, and the Concorde 

TSP solver callable library is used. The algorithm runs are executed in the same 

computers stated above. The computational results of the heuristic methods are 

shared in APPENDIX C. 
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Since all outputs are obtained, comparison tables are formed to evaluate the heuristic 

methods. Average and median values are calculated and analyzed together to 

comment on a general perspective.  

In Table 5.2, the total number of instances can be examined where x is the Gapv.2 

values. 

Table 5.2 The total number of outputs grouped by Gapv.2 values. 

GAPv.2 HBC HBN 

𝑥 ≤ 5% 76 64 

5% < 𝑥 ≤ 10% 16 22 

10% < 𝑥 ≤ 15% 6 10 

𝑥 > 15% 2 4 

 

Performances of the proposed algorithms are compared concerning the number of 

rectangular areas. For that reason, the instances are grouped into three subgroups. 

Hence, instances with 7 and 10 rectangles are denoted as small size, instances with 

15 and 20 rectangles are considered medium-size, and instances with 25 rectangles 

are denoted as large size. 

The average values for performance parameters are calculated and shared for 

corresponding problem instances in Table 5.3. 
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Table 5.3 The average values for the performance parameters. 

 

According to the average values, HBC and HBN are superior in time consumption 

compared to the Cplex. On the other hand, comparing Cplex and heuristic algorithms 

can be misleading since most of the Cplex solutions are obtained without reaching 

the optimal solution. 

Due to Gapv.2 values, the HBC algorithm finds better solutions compared to the 

HBN method. Since the HBC uses Concorde solver repeatedly, it finds solutions 

with low gap values quickly. Therefore, the HBC becomes an appropriate option for 

good objective function values. 

On the other hand, the HBN method dominates the HBC in terms of solution time. 

Because the HBN uses fewer Concorde solvers compared to the HBC, for that 

reason, it is expected to observe less solution time for the HBN. Consequently, the 

HBN is a better option for short solution times. 

The average values show both of the heuristics provide reasonable solutions, and 

they are swift. Still, median values give another perspective. In Table 5.4, the median 

values are given. 

 

 

 

 

Instance Group
Gap 

(%)

Time 

(Sec.)

Gapv.2 

(%)

Time 

(Sec.)

Time 

Gap (%)

Gapv.2 

(%)

Time 

(Sec.)

Time 

Gap (%)

225.96 0.29

83560.88 3.53 3818.00 4.57 5.04 1069.03 1.28

4.26 494.54 0.64 6.08

0.81

4.39

4.29

HBC HBN

14702.30 1.51 11.97 0.08 3.44 6.52 0.04Small N=7, 10

Medium N= 15, 20

Large N=25

Cplex

76940.00

Problem Info.
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Table 5.4 The median values for the performance parameters. 

 

Due to median values, the performance measures show significant differences 

compared to the average values. The small number of extreme outputs negatively 

affects the performance parameters. Especially, median values are quite different for 

small-size Cplex values. However, it does not change the comments based on 

average values. The median values support and show that the heuristic methods 

provide better performance while considering Tables 5.2 and 5.4. 

The heuristics are examined to understand the contribution of the Exchange 

procedure. 

The Exchange procedure contributed 19 problem instances with average values of 

1.74% marginal contribution with 707.93 seconds for the HBC. The Change 

procedure carries a big portion of the workload. 

On the other hand, 54 instances improved by the Exchange procedure for the HBN 

with a 5.2% marginal contribution. 

The Exchange procedure is more beneficial for the HBN. Still, it is advantageous for 

both methods since the Cplex solutions consume significant amount of time. 

The memory usage of the exact method is extensive. Accordingly, 48 problem 

instances give errors because of the memory overflow. Therefore, the Cplex uses 

hard disk, and the heuristic methods only use RAM. Consequently, the heuristic 

methods are also helpful for efficient memory usage. 

Instance Group
Gap 

(%)

Time 

(Sec.)

Gapv.2 

(%)

Time 

(Sec.)

Time 

Gap (%)

Gapv.2 

(%)

Time 

(Sec.)

Time 

Gap (%)

2.92 3.27 1031.90 1.1986414.00 2.09 2523.79

0.35 4.99 138.30 0.1686411.63 2.23 301.11

3.03 1.28 5.67 1.88302.51 0.00 9.17Small N=7, 10

Medium N= 15, 20

Large N=25

0.00

3.95

3.64

Problem Info. Cplex HBC HBN
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Finally, the previous parts are mentioned that both heuristics give reasonable 

solutions. Nevertheless, the methods found better solutions for some problem 

instances than Cplex with 24 hours run time. For the six problems listed in Table 5.5, 

the heuristic algorithms show excellent performance. 

Table 5.5 The outputs of six problem instances which the heuristics show excellent 

performance. 

 

The HBC and the HBN are effective and rapid. Moreover, the excellent performance 

over the Cplex is the effect of the Concorde solver. So, both methods can find the 

optimal solution swiftly. Still, the heuristics are open for improvement.

Instance Name C Gap (%) Value Time (Sec.) Gapv.2 (%) Value Time (Sec.)
Time Gap 

(%)
Gapv.2 (%) Value Time (Sec.)

Time Gap 

(%)

IN_N25_M3_I3 140 7.32 293.83 86411.22 -2.05 287.82 1094.574 1.27 1.13 297.14   778.909 0.90

IN_N25_M2_I3 177 6.68 266.502 86420.03 -0.27 265.77 2902.476 3.36 0.44 267.68   601.131 0.70

IN_N15_M2_I5 114 6.72 187.854 86409.75 -0.15 187.58 345.532 0.40 0.00 187.854 150.781 0.17

IN_N25_M4_I4 143 5.55 290.312 86410.39 0.55 291.91 1944.686 2.25 -0.82 287.93   975.879 1.13

IN_N25_M2_I2 160 9.10 235.976 86423.59 1.04 238.44 10042.668 11.62 -0.65 234.44   902.489 1.04

IN_N25_M3_I4 150 6.64 267.783 86413.41 2.33 274.02 3672.828 4.25 -0.45 266.57   1330.254 1.54

Problem Info. Cplex HBC HBN
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CHAPTER 6  

6 CONCLUSION 

In this thesis study, the concept of ASP is remembered, and a new variant of ASP is 

defined, that is, ASP-H as an extension of models provided in Karasakal (2016). To 

the best of our knowledge, ASP-H is the first study that examines the multiple UAV 

routing under the circumstances of ASP. 

A homogenous UAV fleet must visit a set of rectangular areas, and all UAVs must 

visit at least one of the areas. All air vehicles are assumed to be the same. A capacity 

value restricts them in terms of distance. The air vehicles take off from the base, visit 

the rectangular areas, and return to the base as long as all the rectangular areas are 

visited. 

The solution methods are produced and evaluated using the newly created instance 

problems. A new mathematical model is defined and programmed in the IBM 

CPLEX Linear Optimization tool to solve the problem optimally. One hundred 

generated instance problems are solved with twenty-four hours wall clock time limit. 

In terms of memory usage and time consumption, the mathematical model is 

significantly costly. While the size of the problem increases and the capacity limit is 

getting more strict, the solution time starts to become more likely to hit the time limit. 

Besides, the memory usage of the model is exhausting since the optimization tool 

can solve the problems only if it uses the HDD as the storage instead of RAM. 

Two heuristic algorithms are proposed to tackle the problem efficiently. The 

heuristics use Concorde TSP solver. Hence, ASP-H is converted into TSP and m-

TSP matrix structure with a multilayered transformation method to use Concorde 

TSP solver. Both heuristics consist of two procedures, named change and exchange 

procedures. Where one of the heuristics uses Concorde solver multiple times, the 

other heuristic uses Concorde solver limitedly. 
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The ASP-H can extend to various research topics. As for the future work, the 

heterogeneous fleet of UAVs can be considered. The capacity limits of the UAV 

vary due to the different kinds of UAVs used. Also, ASP can be considered with 

time windows. The rectangular areas can be visited only in a predefined time range. 

Additionally, Concorde solver algorithms are improvable. Instead of focussing on 

improving the solution at hand, focusing on allocating the rectangles to the air 

vehicles may give better solutions. 
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APPENDICES 

A. The rectangle set for generating problem instances (Karasakal 2016). 
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B. The Mathematical Model Results for Benchmark Instances. 

Instance Name C Gap (%) Value Time (Sec.) Status 

IN_N7_M2_I1 79 0.00 149.729 7488.16 Optimal 

IN_N7_M2_I2 58 0.00 107.932 9.46 Optimal 

IN_N7_M2_I3 72 0.00 138.006 3.79 Optimal 

IN_N7_M2_I4 87 0.00 168.406 9.66 Optimal 

IN_N7_M2_I5 82 0.00 150.65 37.53 Optimal 

IN_N10_M2_I1 82 0.00 158.185 65.13 Optimal 

IN_N10_M2_I2 93 0.00 184.939 4703.91 Optimal 

IN_N10_M2_I3 107 6.74 197.003 86410.95 Timelimit 

IN_N10_M2_I4 103 0.00 132.677 2022.45 Optimal 

IN_N10_M2_I5 100 6.46 156.027 86412.28 Timelimit 

IN_N15_M2_I1 125 5.65 183.687 86410.27 Timelimit 

IN_N15_M2_I2 98 4.36 179.951 86417.78 Timelimit 

IN_N15_M2_I3 120 0.40 179.226 86407.3 Timelimit 

IN_N15_M2_I4 126 3.23 149.747 86412.97 Timelimit 

IN_N15_M2_I5 114 6.72 187.854 86409.75 Timelimit 

IN_N20_M2_I1 123 0.00 230.046 22105.47 Optimal 

IN_N20_M2_I2 136 4.52 238.431 86412.83 Timelimit 

IN_N20_M2_I3 140 12.07 218.222 86413.53 Timelimit 

IN_N20_M2_I4 147 0.00 226.037 16272.27 Optimal 

IN_N20_M2_I5 150 5.11 220.725 86410.94 Timelimit 

IN_N25_M2_I1 186 3.75 287.028 86424.33 Timelimit 

IN_N25_M2_I2 160 9.10 235.976 86423.59 Timelimit 

IN_N25_M2_I3 177 6.68 266.502 86420.03 Timelimit 

IN_N25_M2_I4 170 8.08 250.858 86411.11 Timelimit 

IN_N25_M2_I5 174 3.09 254.41 86219.27 Timelimit 

IN_N7_M3_I1 78 0.00 155.937 294.81 Optimal 

IN_N7_M3_I2 55 0.00 123.01 2.8 Optimal 

IN_N7_M3_I3 68 0.00 182.121 5.61 Optimal 

IN_N7_M3_I4 75 0.00 204.709 159.67 Optimal 

IN_N7_M3_I5 80 0.00 164.066 5.01 Optimal 

IN_N10_M3_I1 76 0.00 213.102 5719.78 Optimal 

IN_N10_M3_I2 86 0.00 217.39 1147.66 Optimal 

IN_N10_M3_I3 92 8.63 237.581 86410.06 Timelimit 

IN_N10_M3_I4 80 0.00 161.149 75172.66 Optimal 

IN_N10_M3_I5 89 0.00 168.3 519.05 Optimal 
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IN_N15_M3_I1 96 14.67 217.867 86409.44 Timelimit 

IN_N15_M3_I2 102 0.00 185.082 5274.27 Optimal 

IN_N15_M3_I3 104 3.97 203.185 86409.78 Timelimit 

IN_N15_M3_I4 104 2.96 165.123 86411.34 Timelimit 

IN_N15_M3_I5 101 4.30 201.405 86409.22 Timelimit 

IN_N20_M3_I1 118 0.00 259.052 68442.09 Optimal 

IN_N20_M3_I2 130 3.93 258.05 86416.39 Timelimit 

IN_N20_M3_I3 130 7.92 225.513 86417.77 Timelimit 

IN_N20_M3_I4 117 0.00 249.9 74957.14 Optimal 

IN_N20_M3_I5 135 0.56 226.916 86408.61 Timelimit 

IN_N25_M3_I1 155 3.21 310.572 86415.81 Timelimit 

IN_N25_M3_I2 148 4.98 240.607 86416.09 Timelimit 

IN_N25_M3_I3 140 7.32 293.83 86411.22 Timelimit 

IN_N25_M3_I4 150 6.64 267.783 86413.41 Timelimit 

IN_N25_M3_I5 125 5.03 282.88 86415.2 Timelimit 

IN_N7_M4_I1 75 0.00 186.096 23.21 Optimal 

IN_N7_M4_I2 59 0.00 152.481 3.76 Optimal 

IN_N7_M4_I3 63 0.00 223.453 2.79 Optimal 

IN_N7_M4_I4 71 0.00 245.487 131.38 Optimal 

IN_N7_M4_I5 75 0.00 225.651 40.05 Optimal 

IN_N10_M4_I1 74 0.00 240.886 1138.92 Optimal 

IN_N10_M4_I2 82 0.00 252.975 1228.59 Optimal 

IN_N10_M4_I3 82 8.42 284.035 86410.77 Timelimit 

IN_N10_M4_I4 76 0.00 170.757 32489.63 Optimal 

IN_N10_M4_I5 78 0.00 197.616 310.2 Optimal 

IN_N15_M4_I1 94 8.46 224.077 86412.01 Timelimit 

IN_N15_M4_I2 101 0.00 207.679 33253.48 Optimal 

IN_N15_M4_I3 104 0.00 224.054 15175.5 Optimal 

IN_N15_M4_I4 97 8.96 193.814 86412.03 Timelimit 

IN_N15_M4_I5 95 2.55 221.314 86410.78 Timelimit 

IN_N20_M4_I1 105 3.31 292.402 86417.75 Timelimit 

IN_N20_M4_I2 128 1.81 280.03 86416.98 Timelimit 

IN_N20_M4_I3 130 5.67 239.883 86421.27 Timelimit 

IN_N20_M4_I4 101 5.34 285.312 86216.08 Timelimit 

IN_N20_M4_I5 125 0.25 245.636 86407.53 Timelimit 

IN_N25_M4_I1 150 3.12 339.245 86415.83 Timelimit 

IN_N25_M4_I2 131 4.06 255.13 86415.36 Timelimit 

IN_N25_M4_I3 135 3.53 311.227 86412.16 Timelimit 
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IN_N25_M4_I4 143 5.55 290.312 86410.39 Timelimit 

IN_N25_M4_I5 130 0.89 294.987 86218.59 Timelimit 

IN_N7_M5_I1 72 0.00 229.816 12.03 Optimal 

IN_N7_M5_I2 55 0.00 182.63 2.95 Optimal 

IN_N7_M5_I3 61 0.00 269.226 4.3 Optimal 

IN_N7_M5_I4 68 0.00 275.713 60.95 Optimal 

IN_N7_M5_I5 75 0.00 253.538 7.58 Optimal 

IN_N10_M5_I1 74 0.00 278.54 1596.41 Optimal 

IN_N10_M5_I2 79 0.00 280.869 1497.33 Optimal 

IN_N10_M5_I3 75 1.95 319.563 86408.56 Timelimit 

IN_N10_M5_I4 74 0.00 197.39 19516.09 Optimal 

IN_N10_M5_I5 71 0.00 232.689 606.08 Optimal 

IN_N15_M5_I1 105 5.85 238.754 86423.63 Timelimit 

IN_N15_M5_I2 85 5.06 236.247 86413.98 Timelimit 

IN_N15_M5_I3 87 0.00 256.121 45408.41 Optimal 

IN_N15_M5_I4 85 15.80 235.74 86414.91 Timelimit 

IN_N15_M5_I5 86 1.22 245.921 86413.34 Timelimit 

IN_N20_M5_I1 92 6.02 333.398 86411.91 Timelimit 

IN_N20_M5_I2 126 2.17 308.585 86426.58 Timelimit 

IN_N20_M5_I3 123 3.92 262.379 86427.11 Timelimit 

IN_N20_M5_I4 101 3.41 310.333 86215.67 Timelimit 

IN_N20_M5_I5 115 7.76 282.72 86415.36 Timelimit 

IN_N25_M5_I1 140 1.50 366.531 86414.98 Timelimit 

IN_N25_M5_I2 126 3.52 276.005 86413.31 Timelimit 

IN_N25_M5_I3 132 3.28 342.508 86414.59 Timelimit 

IN_N25_M5_I4 135 2.41 308.965 86411.94 Timelimit 

IN_N25_M5_I5 127 0.00 320.597 29720.36 Optimal 
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C. The Heuristic Method Results for Benchmark Instances 

Problem Info. Cplex HBC HBN 

 

Instance Name 
Gap 

(%) 

Time 

(Sec.) 

Gapv.2 

(%) 

Time 

(Sec.) 

Gapv.2 

(%) 

Time 

(Sec.) 
 

IN_N7_M2_I1 0.00 7488.16 0 5.185 0.05 5.46  

IN_N7_M2_I2 0.00 9.46 0 4.826 5.21 2.861  

IN_N7_M2_I3 0.00 3.79 0 6.952 1.60 5.849  

IN_N7_M2_I4 0.00 9.66 0 8.04 0.00 3.344  

IN_N7_M2_I5 0.00 37.53 0 9.112 1.72 11.945  

IN_N10_M2_I1 0.00 65.13 0 18.74 0.72 11.59  

IN_N10_M2_I2 0.00 4703.91 0 23.818 0.49 10.689  

IN_N10_M2_I3 6.74 86410.95 3.28 17.185 1.04 16.822  

IN_N10_M2_I4 0.00 2022.45 3.55 12.946 3.60 5.497  

IN_N10_M2_I5 6.46 86412.28 0.87 36.789 0.87 23.976  

IN_N15_M2_I1 5.65 86410.27 18.9 529.969 8.61 179.437  

IN_N15_M2_I2 4.36 86417.78 1.51 554.959 8.12 173.094  

IN_N15_M2_I3 0.40 86407.3 5.27 39.619 4.41 21.12  

IN_N15_M2_I4 3.23 86412.97 1.33 293.707 1.33 239.072  

IN_N15_M2_I5 6.72 86409.75 -0.15 345.532 0.00 150.781  

IN_N20_M2_I1 0.00 22105.47 0.53 325.897 1.69 344.129  

IN_N20_M2_I2 4.52 86412.83 2.08 308.514 4.81 256.201  

IN_N20_M2_I3 12.07 86413.53 2.92 593.992 2.56 184.344  

IN_N20_M2_I4 0.00 16272.27 1.78 1862.109 3.16 497.713  

IN_N20_M2_I5 5.11 86410.94 0.23 2182.167 5.16 1255.383  

IN_N25_M2_I1 3.75 86424.33 0 1989.978 4.96 1622.182  

IN_N25_M2_I2 9.10 86423.59 1.04 10042.668 -0.65 902.489  

IN_N25_M2_I3 6.68 86420.03 -0.27 2902.476 0.44 601.131  

IN_N25_M2_I4 8.08 86411.11 1.09 7076.514 2.50 1451.744  

IN_N25_M2_I5 3.09 86219.27 6.77 11408.954 3.36 1548.481  

IN_N7_M3_I1 0.00 294.81 0 4.209 26.68 8.682  

IN_N7_M3_I2 0.00 2.8 0 0.155 0.00 0.259  

IN_N7_M3_I3 0.00 5.61 0 2.613 0.12 1.442  

IN_N7_M3_I4 0.00 159.67 0 3.26 0.23 1.282  

IN_N7_M3_I5 0.00 5.01 0 6.359 1.72 4.839  

IN_N10_M3_I1 0.00 5719.78 2.76 20.209 6.39 11.88  

IN_N10_M3_I2 0.00 1147.66 6.44 11.085 6.87 10.137  

IN_N10_M3_I3 8.63 86410.06 6.49 20.801 12.07 7.64  
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IN_N10_M3_I4 0.00 75172.66 1.31 14.644 16.46 14.287  

IN_N10_M3_I5 0.00 519.05 0 23.816 1.52 11.378  

IN_N15_M3_I1 14.67 86409.44 0.59 271.387 3.97 50.702  

IN_N15_M3_I2 0.00 5274.27 8.9 237.377 3.09 500.925  

IN_N15_M3_I3 3.97 86409.78 2.91 50.752 2.82 31.912  

IN_N15_M3_I4 2.96 86411.34 0.84 112.808 0.83 61.593  

IN_N15_M3_I5 4.30 86409.22 0 270.091 2.07 96.673  

IN_N20_M3_I1 0.00 68442.09 0.08 204.963 11.74 125.817  

IN_N20_M3_I2 3.93 86416.39 5.86 869.599 10.23 670.607  

IN_N20_M3_I3 7.92 86417.77 3.17 457.013 0.85 352.97  

IN_N20_M3_I4 0.00 74957.14 12.47 807.884 12.66 174.695  

IN_N20_M3_I5 0.56 86408.61 0 2019.609 23.92 769.918  

IN_N25_M3_I1 3.21 86415.81 4.12 2145.108 6.00 2230.868  

IN_N25_M3_I2 4.98 86416.09 4.49 7948.654 9.23 567.315  

IN_N25_M3_I3 7.32 86411.22 -2.05 1094.574 1.13 778.909  

IN_N25_M3_I4 6.64 86413.41 2.33 3672.828 -0.45 1330.254  

IN_N25_M3_I5 5.03 86415.2 11.95 1614.813 14.82 848.264  

IN_N7_M4_I1 0.00 23.21 0 2.653 0.74 1.544  

IN_N7_M4_I2 0.00 3.76 0 0.273 0.00 0.55  

IN_N7_M4_I3 0.00 2.79 0 0.184 0.00 0.285  

IN_N7_M4_I4 0.00 131.38 0 5.106 1.56 1.528  

IN_N7_M4_I5 0.00 40.05 0.58 2.904 0.61 1.144  

IN_N10_M4_I1 0.00 1138.92 0 24.601 1.52 9.514  

IN_N10_M4_I2 0.00 1228.59 0 9.232 0.66 4.164  

IN_N10_M4_I3 8.42 86410.77 2.75 15.567 1.93 11.66  

IN_N10_M4_I4 0.00 32489.63 16.67 14.611 18.57 7.296  

IN_N10_M4_I5 0.00 310.2 2.78 74.662 6.50 12.109  

IN_N15_M4_I1 8.46 86412.01 11.1 205.52 4.85 53.503  

IN_N15_M4_I2 0.00 33253.48 6.16 167.117 0.75 186.518  

IN_N15_M4_I3 0.00 15175.5 1.14 36.123 1.14 16.954  

IN_N15_M4_I4 8.96 86412.03 3.42 136.623 7.49 38.575  

IN_N15_M4_I5 2.55 86410.78 1.4 120.019 4.68 32.196  

IN_N20_M4_I1 3.31 86417.75 7.11 221.402 9.80 73.881  

IN_N20_M4_I2 1.81 86416.98 7.17 255.136 8.40 833.11  

IN_N20_M4_I3 5.67 86421.27 3.28 350.017 0.68 366.542  

IN_N20_M4_I4 5.34 86216.08 8.49 810.869 8.31 457.525  

IN_N20_M4_I5 0.25 86407.53 0 391.563 0.00 783.427  

IN_N25_M4_I1 3.12 86415.83 1.84 3625.733 3.18 1270.812  

IN_N25_M4_I2 4.06 86415.36 6.5 5912.472 10.38 1087.926  

IN_N25_M4_I3 3.53 86412.16 0.83 954.66 1.76 470.193  
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IN_N25_M4_I4 5.55 86410.39 0.55 1944.686 -0.82 975.879  

IN_N25_M4_I5 0.89 86218.59 12.23 1321.931 14.06 1730.291  

IN_N7_M5_I1 0.00 12.03 0 2.231 0.00 1.247  

IN_N7_M5_I2 0.00 2.95 0 0.395 0.00 0.311  

IN_N7_M5_I3 0.00 4.3 0 5.757 0.85 2.363  

IN_N7_M5_I4 0.00 60.95 0 2.079 0.00 2.377  

IN_N7_M5_I5 0.00 7.58 3.28 1.958 3.28 0.738  

IN_N10_M5_I1 0.00 1596.41 0 10.005 0.99 8.419  

IN_N10_M5_I2 0.00 1497.33 0.33 11.278 0.28 2.612  

IN_N10_M5_I3 1.95 86408.56 0 19.807 3.40 6.066  

IN_N10_M5_I4 0.00 19516.09 5.77 14.083 5.81 9.081  

IN_N10_M5_I5 0.00 606.08 3.62 10.792 3.62 7.877  

IN_N15_M5_I1 5.85 86423.63 8.75 247.427 11.19 124.949  

IN_N15_M5_I2 5.06 86413.98 1.97 91.611 7.59 26.707  

IN_N15_M5_I3 0.00 45408.41 1.2 30.758 3.90 24.096  

IN_N15_M5_I4 15.80 86414.91 9.68 120.211 9.61 16.957  

IN_N15_M5_I5 1.22 86413.34 7.84 64.535 8.25 35.902  

IN_N20_M5_I1 6.02 86411.91 13.14 202.055 6.46 9.656  

IN_N20_M5_I2 2.17 86426.58 3.69 178.801 7.80 3.578  

IN_N20_M5_I3 3.92 86427.11 2.37 445.184 7.66 6.32  

IN_N20_M5_I4 3.41 86215.67 9.61 436.085 7.12 17.218  

IN_N20_M5_I5 7.76 86415.36 0.26 681.499 0.75 376.387  

IN_N25_M5_I1 1.50 86414.98 3.77 3286.715 5.45 245.462  

IN_N25_M5_I2 3.52 86413.31 4.45 5146.819 12.85 1295.574  

IN_N25_M5_I3 3.28 86414.59 0.06 948 0.26 499.713  

IN_N25_M5_I4 2.41 86411.94 0.86 1642.166 1.88 1329.855  

IN_N25_M5_I5 0.00 29720.36 10.1 1680.321 10.55 593.239  

 


